From 9a7e2d053405da076ff0975660e82c4bc08a62be Mon Sep 17 00:00:00 2001 From: Thomas Parnell Date: Mon, 29 Jul 2024 23:51:27 +0200 Subject: [PATCH] [Bugfix] Allow vllm to still work if triton is not installed. (#6786) Signed-off-by: Thomas Parnell --- requirements-cpu.txt | 1 - requirements-openvino.txt | 2 -- requirements-tpu.txt | 1 - tests/kernels/test_sampler.py | 7 +++--- vllm/attention/ops/paged_attn.py | 5 ++++- .../layers/fused_moe/__init__.py | 22 +++++++++++++------ vllm/model_executor/layers/ops/sample.py | 14 +----------- .../model_executor/layers/quantization/fp8.py | 4 ++-- vllm/model_executor/layers/sampler.py | 6 ++++- vllm/model_executor/sampling_metadata.py | 2 +- vllm/triton_utils/__init__.py | 14 +++++++----- vllm/triton_utils/importing.py | 11 ++++++++++ vllm/triton_utils/sample.py | 13 +++++++++++ 13 files changed, 65 insertions(+), 37 deletions(-) create mode 100644 vllm/triton_utils/importing.py create mode 100644 vllm/triton_utils/sample.py diff --git a/requirements-cpu.txt b/requirements-cpu.txt index a8ce104d83290..2dcd86274a2a8 100644 --- a/requirements-cpu.txt +++ b/requirements-cpu.txt @@ -4,4 +4,3 @@ # Dependencies for x86_64 CPUs torch == 2.4.0; platform_machine != "ppc64le" torchvision; platform_machine != "ppc64le" # required for the image processor of phi3v, this must be updated alongside torch -triton >= 2.2.0 # FIXME(woosuk): This is a hack to avoid import error. diff --git a/requirements-openvino.txt b/requirements-openvino.txt index e32c76fb0db21..fabac3c7bbaf9 100644 --- a/requirements-openvino.txt +++ b/requirements-openvino.txt @@ -5,5 +5,3 @@ torch >= 2.1.2 openvino ~= 2024.3.0.dev optimum-intel[openvino] >= 1.18.1 - -triton >= 2.2.0 # FIXME(woosuk): This is a hack to avoid import error. diff --git a/requirements-tpu.txt b/requirements-tpu.txt index c2140fbffec9f..5eb27b39eb623 100644 --- a/requirements-tpu.txt +++ b/requirements-tpu.txt @@ -5,4 +5,3 @@ # Currently, the TPU backend uses a nightly version of PyTorch XLA. # You can install the dependencies in Dockerfile.tpu. ray -triton # To avoid import errors diff --git a/tests/kernels/test_sampler.py b/tests/kernels/test_sampler.py index e28f809309ec5..3c53f7decc6eb 100644 --- a/tests/kernels/test_sampler.py +++ b/tests/kernels/test_sampler.py @@ -5,11 +5,12 @@ import triton import triton.language as tl -from vllm.model_executor.layers.ops.sample import ( - MAX_TRITON_N_COLS, _uniform_to_exponential, get_num_triton_sampler_splits, - sample) +from vllm.model_executor.layers.ops.sample import (_uniform_to_exponential, + sample) from vllm.model_executor.sampling_metadata import SamplingTensors from vllm.model_executor.utils import set_random_seed +from vllm.triton_utils.sample import (MAX_TRITON_N_COLS, + get_num_triton_sampler_splits) SINGLE_SPLIT_VOCAB_SIZE = 32000 # llama/mistral/mixtral vocab size MULTI_SPLIT_VOCAB_SIZE = MAX_TRITON_N_COLS + 100 diff --git a/vllm/attention/ops/paged_attn.py b/vllm/attention/ops/paged_attn.py index 0f6d2f2d1ab3f..e88963ade16c9 100644 --- a/vllm/attention/ops/paged_attn.py +++ b/vllm/attention/ops/paged_attn.py @@ -4,7 +4,10 @@ import torch from vllm import _custom_ops as ops -from vllm.attention.ops.prefix_prefill import context_attention_fwd +from vllm.triton_utils import HAS_TRITON + +if HAS_TRITON: + from vllm.attention.ops.prefix_prefill import context_attention_fwd # Should be the same as PARTITION_SIZE in `paged_attention_v2_launcher`. _PARTITION_SIZE = 512 diff --git a/vllm/model_executor/layers/fused_moe/__init__.py b/vllm/model_executor/layers/fused_moe/__init__.py index db837231c6ace..3e0767c7d2665 100644 --- a/vllm/model_executor/layers/fused_moe/__init__.py +++ b/vllm/model_executor/layers/fused_moe/__init__.py @@ -1,14 +1,22 @@ -from vllm.model_executor.layers.fused_moe.fused_moe import ( - fused_experts, fused_moe, fused_topk, get_config_file_name, grouped_topk) from vllm.model_executor.layers.fused_moe.layer import (FusedMoE, FusedMoEMethodBase) +from vllm.triton_utils import HAS_TRITON __all__ = [ - "fused_moe", - "fused_topk", - "fused_experts", - "get_config_file_name", - "grouped_topk", "FusedMoE", "FusedMoEMethodBase", ] + +if HAS_TRITON: + + from vllm.model_executor.layers.fused_moe.fused_moe import ( + fused_experts, fused_moe, fused_topk, get_config_file_name, + grouped_topk) + + __all__ += [ + "fused_moe", + "fused_topk", + "fused_experts", + "get_config_file_name", + "grouped_topk", + ] diff --git a/vllm/model_executor/layers/ops/sample.py b/vllm/model_executor/layers/ops/sample.py index d08ae6064aa2a..bdb577da3172f 100644 --- a/vllm/model_executor/layers/ops/sample.py +++ b/vllm/model_executor/layers/ops/sample.py @@ -1,4 +1,3 @@ -import math from typing import Optional, Tuple import torch @@ -6,21 +5,10 @@ import triton.language as tl from vllm.model_executor.layers.ops.rand import seeded_uniform +from vllm.triton_utils.sample import get_num_triton_sampler_splits _EPS = 1e-6 -# This is a hardcoded limit in Triton (max block size). -MAX_TRITON_N_COLS = 131072 - - -def get_num_triton_sampler_splits(n_cols: int) -> int: - """Get the number of splits to use for Triton sampling. - - Triton has a limit on the number of columns it can handle, so we need to - split the tensor and call the kernel multiple times if it's too large. - """ - return math.ceil(n_cols / MAX_TRITON_N_COLS) - def _multi_split_sample( probs: torch.Tensor, diff --git a/vllm/model_executor/layers/quantization/fp8.py b/vllm/model_executor/layers/quantization/fp8.py index 6649b317ca838..c829cb836ee4c 100644 --- a/vllm/model_executor/layers/quantization/fp8.py +++ b/vllm/model_executor/layers/quantization/fp8.py @@ -6,8 +6,7 @@ from vllm import _custom_ops as ops from vllm.logger import init_logger -from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase, - fused_moe) +from vllm.model_executor.layers.fused_moe import FusedMoE, FusedMoEMethodBase from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) from vllm.model_executor.layers.quantization.base_config import ( @@ -404,6 +403,7 @@ def apply(self, num_expert_group: Optional[int] = None, topk_group: Optional[int] = None) -> torch.Tensor: + from vllm.model_executor.layers.fused_moe import fused_moe return fused_moe(x, layer.w13_weight, layer.w2_weight, diff --git a/vllm/model_executor/layers/sampler.py b/vllm/model_executor/layers/sampler.py index 60fa3fbb51be6..6632b1c434582 100644 --- a/vllm/model_executor/layers/sampler.py +++ b/vllm/model_executor/layers/sampler.py @@ -6,7 +6,11 @@ import torch import torch.nn as nn -from vllm.model_executor.layers.ops.sample import sample as sample_triton +from vllm.triton_utils import HAS_TRITON + +if HAS_TRITON: + from vllm.model_executor.layers.ops.sample import sample as sample_triton + from vllm.model_executor.sampling_metadata import (SamplingMetadata, SamplingTensors, SequenceGroupToSample) diff --git a/vllm/model_executor/sampling_metadata.py b/vllm/model_executor/sampling_metadata.py index 27b37a9d53470..1caf9aa01d8c8 100644 --- a/vllm/model_executor/sampling_metadata.py +++ b/vllm/model_executor/sampling_metadata.py @@ -5,9 +5,9 @@ import torch -from vllm.model_executor.layers.ops.sample import get_num_triton_sampler_splits from vllm.sampling_params import SamplingParams, SamplingType from vllm.sequence import SequenceData, SequenceGroupMetadata +from vllm.triton_utils.sample import get_num_triton_sampler_splits from vllm.utils import (async_tensor_h2d, is_pin_memory_available, make_tensor_with_pad, maybe_expand_dim) diff --git a/vllm/triton_utils/__init__.py b/vllm/triton_utils/__init__.py index 09843e5d1f30b..568185383aa5c 100644 --- a/vllm/triton_utils/__init__.py +++ b/vllm/triton_utils/__init__.py @@ -1,6 +1,10 @@ -from vllm.triton_utils.custom_cache_manager import ( - maybe_set_triton_cache_manager) +from vllm.triton_utils.importing import HAS_TRITON -__all__ = [ - "maybe_set_triton_cache_manager", -] +__all__ = ["HAS_TRITON"] + +if HAS_TRITON: + + from vllm.triton_utils.custom_cache_manager import ( + maybe_set_triton_cache_manager) + + __all__ += ["maybe_set_triton_cache_manager"] diff --git a/vllm/triton_utils/importing.py b/vllm/triton_utils/importing.py new file mode 100644 index 0000000000000..3455036586a93 --- /dev/null +++ b/vllm/triton_utils/importing.py @@ -0,0 +1,11 @@ +from importlib.util import find_spec + +from vllm.logger import init_logger + +logger = init_logger(__name__) + +HAS_TRITON = find_spec("triton") is not None + +if not HAS_TRITON: + logger.info("Triton not installed; certain GPU-related functions" + " will be not be available.") diff --git a/vllm/triton_utils/sample.py b/vllm/triton_utils/sample.py new file mode 100644 index 0000000000000..401e4d28a3c99 --- /dev/null +++ b/vllm/triton_utils/sample.py @@ -0,0 +1,13 @@ +import math + +# This is a hardcoded limit in Triton (max block size). +MAX_TRITON_N_COLS = 131072 + + +def get_num_triton_sampler_splits(n_cols: int) -> int: + """Get the number of splits to use for Triton sampling. + + Triton has a limit on the number of columns it can handle, so we need to + split the tensor and call the kernel multiple times if it's too large. + """ + return math.ceil(n_cols / MAX_TRITON_N_COLS)