forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_hf.py
162 lines (146 loc) · 6.09 KB
/
run_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import csv
from pathlib import Path
import numpy as np
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, T5Tokenizer
import tensorrt_llm
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, required=True)
parser.add_argument('--log_level', type=str, default='error')
parser.add_argument('--model_dir', type=str, default='gpt2')
parser.add_argument('--data_type',
type=str,
choices=['fp32', 'fp16'],
default='fp32')
parser.add_argument('--input_text',
type=str,
default='Born in north-east France, Soyer trained as a')
parser.add_argument(
'--input_tokens',
dest='input_file',
type=str,
help=
'CSV or Numpy file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--output_csv',
type=str,
help='CSV file where the tokenized output is stored.',
default=None)
parser.add_argument('--output_npy',
type=str,
help='Numpy file where the tokenized output is stored.',
default=None)
parser.add_argument('--tokenizer',
dest='tokenizer_path',
help="HF tokenizer config path",
default='gpt2')
parser.add_argument('--vocab_file',
help="Used for sentencepiece tokenizers")
return parser.parse_args()
def generate(
max_output_len: int,
log_level: str = 'error',
model_dir: str = 'gpt2',
data_type: str = 'fp32',
input_text: str = 'Born in north-east France, Soyer trained as a',
input_file: str = None,
output_csv: str = None,
output_npy: str = None,
tokenizer_path='gpt2',
vocab_file=None,
):
tensorrt_llm.logger.set_level(log_level)
model = AutoModelForCausalLM.from_pretrained(model_dir,
trust_remote_code=True)
model.cuda()
if data_type == 'fp16':
model.half()
if vocab_file is not None:
tokenizer = T5Tokenizer(vocab_file=vocab_file)
END_ID = 50256
else:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
END_ID = tokenizer.eos_token_id
input_tokens = []
if input_file is None:
input_tokens.append(
tokenizer.encode(input_text, add_special_tokens=False))
else:
if input_file.endswith('.csv'):
with open(input_file, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for line in csv_reader:
input_tokens.append(np.array(line, dtype='int32'))
elif input_file.endswith('.npy'):
inputs = np.load(input_file)
for row in inputs:
row = row[row != END_ID]
input_tokens.append(row)
else:
print('Input file format not supported.')
raise SystemExit
input_ids = None
input_lengths = None
if input_file is None:
input_ids = torch.tensor(input_tokens, dtype=torch.int32, device='cuda')
input_lengths = torch.tensor([input_ids.size(1)],
dtype=torch.int32,
device='cuda')
max_input_length = torch.max(input_lengths).item()
else:
input_lengths = torch.tensor([len(x) for x in input_tokens],
dtype=torch.int32,
device='cuda')
max_input_length = torch.max(input_lengths).item()
input_ids = np.full((len(input_lengths), max_input_length), END_ID)
for i in range(len(input_lengths)):
input_ids[i][-len(input_tokens[i]):] = input_tokens[i]
input_ids = torch.tensor(input_ids, dtype=torch.int32, device='cuda')
top_k = 1
temperature = 1
output_ids = model.generate(input_ids,
max_length=max_input_length + max_output_len,
top_k=top_k,
temperature=temperature,
eos_token_id=END_ID,
pad_token_id=END_ID)
torch.cuda.synchronize()
if output_csv is None and output_npy is None:
for b in range(input_lengths.size(0)):
inputs = input_tokens[b]
input_text = tokenizer.decode(inputs)
print(f'Input: {input_text}')
outputs = output_ids[b][max_input_length:].tolist()
output_text = tokenizer.decode(outputs)
print(f'Output: {output_text}')
if output_csv is not None:
output_file = Path(output_csv)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids[:, max_input_length:].tolist()
with open(output_file, 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerows(outputs)
if output_npy is not None:
output_file = Path(output_npy)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids[:, max_input_length:].tolist()
np.save(output_file, np.array(outputs, dtype='int32'))
if __name__ == '__main__':
args = parse_arguments()
generate(**vars(args))