forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnemo_prompt_convert.py
executable file
·145 lines (122 loc) · 5.41 KB
/
nemo_prompt_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#! /usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import logging
import tempfile
from pathlib import Path
import numpy as np
import torch
import yaml
from convert_checkpoint import cpu_map_location, unpack_nemo_ckpt
from tensorrt_llm._utils import torch_to_numpy
log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s"
logging.basicConfig(format=log_format)
LOGGER = logging.getLogger(__name__)
def prompt_convert(out_file, prompt_config, prompt_weights):
nemo_type = "peft_tuning" if "peft" in prompt_config else "prompt_learning"
vtokens_embeddings = []
vtokens_len = []
if nemo_type == "peft_tuning":
ptuning_key = "model.embedding.adapter_layer.ptuning_adapter.inference_table"
if ptuning_key not in prompt_weights:
key_match = "adapter_layer.ptuning_adapter"
for k in prompt_weights.keys():
if key_match in k:
ptuning_key = k
break
else:
raise ValueError(
"Could not find a suitable ptuning key in Nemo dict."
f" Tried {ptuning_key} or any key matching *{key_match}*")
prompt_task_weights = prompt_weights[ptuning_key]
if 'hidden_size' in prompt_config:
assert prompt_config['hidden_size'] == prompt_task_weights.shape[
1], "P-Tuning hidden size does not match the model's."
vtokens_embeddings.append(prompt_task_weights)
vtokens_len.append(prompt_task_weights.shape[0])
else:
prompt_templates = prompt_config["task_templates"]
actual_task_id = 0
for task_name_id, prompt_task in enumerate(prompt_templates):
prompt_task_name = prompt_task["taskname"]
LOGGER.info(f"Task {actual_task_id}: {prompt_task['taskname']}")
prompt_task_weights = prompt_weights["prompt_table"].get(
f"prompt_table.{prompt_task_name}.prompt_embeddings.weight")
if prompt_task_weights is None:
continue
vtokens_embeddings.append(prompt_task_weights)
vtokens_len.append(prompt_task_weights.shape[0])
actual_task_id += 1
max_vtoken_len = max(vtokens_len)
embedding_dim = vtokens_embeddings[0].shape[1]
# pad tasks to longest task embedding table
for i, vtoken_emb_table in enumerate(vtokens_embeddings):
padded_table = torch.zeros((max_vtoken_len, embedding_dim))
padded_table[:vtoken_emb_table.shape[0], :] = vtoken_emb_table
vtokens_embeddings[i] = padded_table
vtokens_embeddings = torch.stack(vtokens_embeddings)
np.save(out_file, torch_to_numpy(vtokens_embeddings))
def main(args):
start_time = datetime.datetime.now()
with tempfile.TemporaryDirectory() as prompt_out_dir:
prompt_out_dir = Path(prompt_out_dir)
unpack_nemo_ckpt(args.in_file, prompt_out_dir)
LOGGER.info("Spent %s (h:m:s) to unpack NeMo prompt archive",
datetime.datetime.now() - start_time)
model_weights_ckpt = "model_weights.ckpt"
with open(prompt_out_dir / "model_config.yaml") as f:
prompt_config = yaml.full_load(f)
LOGGER.debug(prompt_config)
start_time = datetime.datetime.now()
weight_path = prompt_out_dir / model_weights_ckpt
if not weight_path.exists():
weight_path = prompt_out_dir / "mp_rank_00" / model_weights_ckpt
prompt_weights = torch.load(
weight_path,
map_location=cpu_map_location,
)
prompt_convert(args.out_file, prompt_config, prompt_weights)
LOGGER.info("Spent %s (h:m:s) to convert the prompt model",
datetime.datetime.now() - start_time)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--out-file',
'-o',
type=Path,
help='path to output embedding table file in the .npy format',
required=True)
parser.add_argument('--in-file',
'-i',
type=Path,
help='path to input prompt-tuning checkpoint file',
required=True)
parser.add_argument("--storage-type",
"-t",
type=str,
default="fp32",
choices=["fp32", "fp16"])
parser.add_argument("--verbose",
action="store_true",
help="Provide verbose messages")
args = parser.parse_args()
LOGGER.setLevel(logging.DEBUG if args.verbose else logging.INFO)
print("\n=============== Argument ===============")
for key in vars(args):
print(f"{key}: {vars(args)[key]}")
print("========================================")
main(args)