forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnemo_lora_convert.py
206 lines (179 loc) · 7.89 KB
/
nemo_lora_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#! /usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import logging
import tempfile
from pathlib import Path
import numpy as np
import torch
import yaml
from convert_checkpoint import cpu_map_location, unpack_nemo_ckpt
from tensorrt_llm._utils import str_dtype_to_torch, to_json_file, torch_to_numpy
from tensorrt_llm.lora_manager import LoraManager, get_all_nemo_lora_weights
log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s"
logging.basicConfig(format=log_format)
LOGGER = logging.getLogger(__name__)
def get_lora_keys(layer_idx):
in_key = f'model.language_model.encoder.layers.{layer_idx}.self_attention.adapter_layer.lora_kqv_adapter.linear_in.weight'
out_key = f'model.language_model.encoder.layers.{layer_idx}.self_attention.adapter_layer.lora_kqv_adapter.linear_out.weight'
return in_key, out_key
def save_val(val, dir, key, tp_num=None, write_npy=False):
ext = "npy" if write_npy else "bin"
suffix = ext if tp_num is None else f"{tp_num}.{ext}"
if write_npy:
np.save(dir / f"model.{key}.{suffix}", val)
else:
val.tofile(dir / f"model.{key}.{suffix}")
def lora_convert(out_dir, lora_config, lora_weights, customization_id,
precision):
saved_dir = Path(out_dir)
saved_dir.mkdir(parents=True, exist_ok=True)
num_layers = int(lora_config["num_layers"])
config = {"lora_config": {"lora_kqv_adapter": {}}}
config['lora_config']['precision'] = precision
layer_weights = get_all_nemo_lora_weights(num_layers, lora_weights)
for layer_idx in range(num_layers):
linear_in_weight = layer_weights[layer_idx]['in']
linear_out_weight = layer_weights[layer_idx]['out']
config["lora_config"]["lora_kqv_adapter"]["0"] = {
"key": f"{customization_id}",
"low_rank": f"{linear_in_weight.shape[0]}",
}
# do something else here. just choose some key instead of basing it on the nemo key
in_key, out_key = get_lora_keys(layer_idx)
save_val(
torch_to_numpy(
linear_in_weight.transpose(
1, 0).contiguous().to(dtype=str_dtype_to_torch(precision))),
saved_dir,
in_key.replace("lora_kqv_adapter", f"lora_kqv_adapter.{0}"))
save_val(
torch_to_numpy(
linear_out_weight.transpose(
1, 0).contiguous().to(dtype=str_dtype_to_torch(precision))),
saved_dir,
out_key.replace("lora_kqv_adapter", f"lora_kqv_adapter.{0}"))
to_json_file(config, saved_dir / "lora_weights.json")
def lora_convert_cpp_runtime(out_dir,
lora_config,
lora_weights,
precision='float16'):
saved_dir = Path(out_dir)
saved_dir.mkdir(parents=True, exist_ok=True)
num_layers = int(lora_config["num_layers"])
weights = []
weight_config = []
layer_weights = get_all_nemo_lora_weights(num_layers, lora_weights)
for layer_idx in range(num_layers):
in_weights = layer_weights[layer_idx]['in']
out_weights = layer_weights[layer_idx]['out']
LOGGER.debug(f"layer {layer_idx} in_weights: {in_weights.shape}")
LOGGER.debug(f"layer {layer_idx} out_weights: {out_weights.shape}")
in_out_weights = []
adapter_size = 0
for w, inout in ((in_weights, "in"), (out_weights, "out")):
assert len(w.shape) == 2
# assume that the hidden dim is the larger of the 2
dim0 = w.shape[0]
dim1 = w.shape[1]
adapter_size = min(dim0, dim1)
# in_weights should have shape [adaper_size, hidden]
if dim1 < dim0 and inout == "in":
adapter_size = dim1
w = w.transpose(1, 0)
# out_weights should have shape [hidden, adapter_size]
elif dim0 < dim1 and inout == "out":
adapter_size = dim0
w = w.transpose(1, 0)
w = w.contiguous().flatten().to(dtype=str_dtype_to_torch(precision))
in_out_weights.append(w)
in_out_weights = torch.concatenate(in_out_weights).flatten().numpy()
weights.append(in_out_weights)
weight_config.append(
np.array([
LoraManager.LORA_MODULE_IDS["attn_qkv"], layer_idx, adapter_size
],
dtype=np.int32))
all_weights = np.expand_dims(np.stack(weights), 0)
all_configs = np.expand_dims(np.stack(weight_config), 0)
save_val(all_weights,
saved_dir,
"lora_weights",
tp_num=None,
write_npy=True)
save_val(all_configs, saved_dir, "lora_config", tp_num=None, write_npy=True)
def main(args):
start_time = datetime.datetime.now()
with tempfile.TemporaryDirectory() as prompt_out_dir:
prompt_out_dir = Path(prompt_out_dir)
unpack_nemo_ckpt(args.in_file, prompt_out_dir)
LOGGER.info("Spent %s (h:m:s) to unpack NeMo prompt archive",
datetime.datetime.now() - start_time)
model_weights_ckpt = "model_weights.ckpt"
with open(prompt_out_dir / "model_config.yaml") as f:
prompt_config = yaml.full_load(f)
LOGGER.debug(prompt_config)
start_time = datetime.datetime.now()
weight_path = prompt_out_dir / model_weights_ckpt
prompt_weights = torch.load(
weight_path,
map_location=cpu_map_location,
)
if args.write_cpp_runtime_tensors:
lora_convert_cpp_runtime(args.out_dir,
prompt_config,
prompt_weights,
precision=args.storage_type)
else:
lora_convert(args.out_dir,
prompt_config,
prompt_weights,
args.customization_id,
precision=args.storage_type)
LOGGER.info("Spent %s (h:m:s) to convert the prompt model",
datetime.datetime.now() - start_time)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--out-dir',
'-o',
type=Path,
help='path to output embedding table file in the .npy format',
required=True)
parser.add_argument('--in-file',
'-i',
type=Path,
help='path to input prompt-tuning checkpoint file',
required=True)
parser.add_argument("--verbose",
action="store_true",
help="Provide verbose messages")
parser.add_argument("--customization-id", type=str, default="lora")
parser.add_argument("--write-cpp-runtime-tensors",
action="store_true",
default=False)
parser.add_argument("--storage-type",
type=str,
default="float16",
choices=["float32", "float16", "bfloat16"])
args = parser.parse_args()
LOGGER.setLevel(logging.DEBUG if args.verbose else logging.INFO)
print("\n=============== Argument ===============")
for key in vars(args):
print(f"{key}: {vars(args)[key]}")
print("========================================")
main(args)