Skip to content

Latest commit

 

History

History
635 lines (538 loc) · 32.8 KB

performance.md

File metadata and controls

635 lines (538 loc) · 32.8 KB

Performance of TensorRT-LLM

This document summarizes performance measurements of TensorRT-LLM on H100 (Hopper), L40S (Ada) and A100 (Ampere) GPUs for a few key models.

The data in the following tables is provided as a reference point to help users validate observed performance. It should not be considered as the peak performance that can be delivered by TensorRT-LLM.

Methodology

The different performance numbers below were collected using the methodology described in the benchmarks folder.

Peak Throughput

The below tables provide reference data at large batch sizes, representing high throughput offline tasks.

All data was generated using version 0.8.0

H200 GPUs (FP8)

Model Batch Size TP (1) Input Length Output Length Throughput (out tok/s/GPU)
GPT-J 6B 1024 1 128 128 29,168
GPT-J 6B 120 1 128 2048 9,472
GPT-J 6B 64 1 2048 128 2,961
GPT-J 6B 64 1 2048 2048 4,149
Mistral 7B 896 1 128 128 20,569
Mistral 7B 120 1 128 2048 8,968
Mistral 7B 84 1 2048 128 2,450
Mistral 7B 56 1 2048 2048 3,868
LLaMA 7B 896 1 128 128 20,548
LLaMA 7B 120 1 128 2048 8,343
LLaMA 7B 84 1 2048 128 2,429
LLaMA 7B 56 1 2048 2048 3,530
LLaMA 70B 512 1 128 128 3,844
LLaMA 70B 512 2 128 2048 4,008
LLaMA 70B 64 1 2048 128 421
LLaMA 70B 64 1 2048 2048 1,461
Falcon 180B 1024 4 128 128 1,116
Falcon 180B 1024 4 128 2048 990
Falcon 180B 64 4 2048 128 118
Falcon 180B 64 4 2048 2048 269

H100 GPUs (FP8)

Model Batch Size TP (1) Input Length Output Length Throughput (out tok/s/GPU)
GPT-J 6B 1024 1 128 128 27,357
GPT-J 6B 120 1 128 2048 7,831
GPT-J 6B 64 1 2048 128 2,661
GPT-J 6B 64 1 2048 2048 3,409
Mistral 7B 896 1 128 128 20,517
Mistral 7B 120 1 128 2048 8,619
Mistral 7B 64 1 2048 128 2,438
Mistral 7B 56 1 2048 2048 3,733
LLaMA 7B 896 1 128 128 20,241
LLaMA 7B 120 1 128 2048 6,922
LLaMA 7B 64 1 2048 128 2,170
LLaMA 7B 56 1 2048 2048 2,816
LLaMA 70B 1024 2 128 128 3,269
LLaMA 70B 512 4 128 2048 2,718
LLaMA 70B 96 2 2048 128 347
LLaMA 70B 64 2 2048 2048 1,020
Falcon 180B 512 4 128 128 1,048
Falcon 180B 1024 8 128 2048 836
Falcon 180B 64 4 2048 128 114
Falcon 180B 64 4 2048 2048 250

L40S GPUs (FP8)

Model Batch Size TP (1) Input Length Output Length Throughput (out tok/s/GPU)
GPT-J 6B 512 1 128 128 7,992
GPT-J 6B 64 1 128 2048 1,874
GPT-J 6B 32 1 2048 128 693
GPT-J 6B 32 1 2048 2048 768
Mistral 7B 896 1 128 128 9,679
Mistral 7B 120 1 128 2048 4,401
Mistral 7B 84 1 2048 128 979
Mistral 7B 56 1 2048 2048 1,721
LLaMA 7B 256 1 128 128 5,954
LLaMA 7B 64 1 128 2048 1,654
LLaMA 7B 32 1 2048 128 579
LLaMA 7B 16 1 2048 2048 542
LLaMA 70B 256 2 128 128 561
LLaMA 70B 256 4 128 2048 471
LLaMA 70B 16 2 2048 128 49
LLaMA 70B 64 4 2048 2048 177
Falcon 180B 512 8 128 128 152
Falcon 180B 256 8 128 2048 200
Falcon 180B 32 8 2048 128 15
Falcon 180B 16 8 2048 2048 39

A100 GPUs (FP16)

Model Batch Size TP (1) Input Length Output Length Throughput (out tok/s/GPU)
GPT-J 6B 512 1 128 128 6,810
GPT-J 6B 32 1 128 2048 1,658
GPT-J 6B 32 1 2048 128 631
GPT-J 6B 16 1 2048 2048 692
Mistral 7B 896 1 128 128 6,472
Mistral 7B 120 1 128 2048 3,812
Mistral 7B 84 1 2048 128 734
Mistral 7B 56 1 2048 2048 1,607
LLaMA 7B 256 1 128 128 5,353
LLaMA 7B 32 1 128 2048 1,518
LLaMA 7B 32 1 2048 128 547
LLaMA 7B 16 1 2048 2048 613
LLaMA 70B 256 4 128 128 565
LLaMA 70B 128 4 128 2048 595
LLaMA 70B 32 4 2048 128 66
LLaMA 70B 32 4 2048 2048 185
Falcon 180B 256 8 128 128 193
Falcon 180B 256 8 128 2048 203
Falcon 180B 16 8 2048 128 20

(1) TP stands for Tensor Parallelism.

Low Latency**

All data was generated using version 0.8.0 ** Low latency numbers will soon be updated to reflect real time latency with infight-batching.

The below tables provide reference data at batch size 1 for first token latency, representing end-user's perceived latency for online streaming tasks.

H200 GPUs (FP8)

Model Batch Size TP (1) Input Length 1st Token Latency (ms)
GPT-J 6B 1 1 128 5.2
GPT-J 6B 1 1 2048 23.6
Mistral 7B 1 1 128 6.0
Mistral 7B 1 1 2048 31.8
LLaMA 7B 1 1 128 5.8
LLaMA 7B 1 1 2048 30.1
LLaMA 70B 1 8 128 16.0
LLaMA 70B 1 8 2048 78.8
Falcon 180B 1 8 128 37.2
Falcon 180B 1 8 2048 120.8

H100 GPUs (FP8)

Model Batch Size TP (1) Input Length 1st Token Latency (ms)
GPT-J 6B 1 1 128 5.7
GPT-J 6B 1 1 2048 23.8
Mistral 7B 1 1 128 6.6
Mistral 7B 1 1 2048 32.6
LLaMA 7B 1 1 128 6.4
LLaMA 7B 1 1 2048 31.0
LLaMA 70B 1 8 128 17.0
LLaMA 70B 1 8 2048 84.4
Falcon 180B 1 8 128 39.7
Falcon 180B 1 8 2048 128.0

L40S GPUs (FP8)

Model Batch Size TP (1) Input Length 1st Token Latency (ms)
GPT-J 6B 1 1 128 12.6
GPT-J 6B 1 1 2048 61.2
Mistral 7B 1 1 128 15.5
Mistral 7B 1 1 2048 84.3
LLaMA 7B 1 1 128 14.3
LLaMA 7B 1 1 2048 79.0
LLaMA 70B 1 8 128 70.9
LLaMA 70B 1 8 2048 708.7
Falcon 180B 1 8 128 93.4
Falcon 180B 1 8 2048 769.8

A100 GPUs (FP16)

Model Batch Size TP (1) Input Length 1st Token Latency (ms)
GPT-J 6B 1 1 128 14.1
GPT-J 6B 1 1 2048 102.8
Mistral 7B 1 1 128 16.4
Mistral 7B 1 1 2048 128.7
LLaMA 7B 1 1 128 16.1
LLaMA 7B 1 1 2048 120.5
LLaMA 70B 1 8 128 35.6
LLaMA 70B 1 8 2048 235.1
Falcon 180B 1 8 128 76.5
Falcon 180B 1 8 2048 463.0

(1) TP stands for Tensor Parallelism.

Known Issues

The following issues are being addressed to improve the efficiency of TensorRT-LLM.

Fused Matmul + Gated-SiLU (LLaMA)

The current implementation combines two Matmul operations into one Matmul followed by a separate SwiGLU kernel (when --use_fused_mlp is enabled). The future release will include a more efficient implementation that runs single Matmul + SwiGLU fused kernel.

Reproducing Benchmarked Results

Building the TensorRT-LLM Container


In order to benchmark TensorRT-LLM, you will need to follow the Quick Start build process to create a baseline container for building a wheel. Additionally, the development container needs a copy of the source code to build the wheel and the benchmarking script. Create the right build environment, use the following :

git clone https://github.com/NVIDIA/TensorRT-LLM.git
cd TensorRT-LLM
git submodule update --init --recursive
git lfs install
git lfs pull
make -C docker build
make -C docker run LOCAL_USER=1

Warning

If you have elevated privileges on your system, then skip the make -C docker run LOCAL_USER=1 command above as it may make it so that you cannot access some required system libraries within the container because the build forces your UID and GID to match those that are set for your non-elevated user. There are cases where the container will be booted as root (i.e. on some SLURM systems with the pyxis plugin) which will cause libraries to be missing.

If you are benchmarking in a shared environment, you need to specify the GPU indices that you would like the container to use, otherwise the Makefile defaults to loading the container with all GPUs on the system. For example, if you only have the 4 higher indices of GPUs on your system you can configure it using the following example:

NV_GPU=0,1,2,3
make -C docker run LOCAL_USER=1 GPU_OPTS='--gpus \"device=${NV_GPU}\"'

Additionally, if you'd like to mount external storage to access persistent storage, or previously built engines, you can mount directories as follows (simply replace source and destination with the appropriate paths):

make -C docker run LOCAL_USER=1 DOCKER_RUN_ARGS="-v /source:/destination"

Once the container starts, you'll need to build the wheel and the benchmarking scripts. From the code root (the default directory when the container is loaded), the following commands will build the TensorRT-LLM wheel, install dependencies, and build the benchmark scripts:

python3 ./scripts/build_wheel.py --benchmarks --trt_root /usr/local/tensorrt
pip install ./build/tensorrt_llm*.whl

Methodology

Engine Building Setups

Each engine needs to be built before they can be benchmarked, and requires the source code for each of their respective build scripts. For smaller models, it is fine to build the engine on the fly in container; however, for larger engines it is recommended to pre-build and mount a directory with the engine because engine files are quite large and take time to repeatedly build. Additionally, built engines can be used for input lengths, output lengths, and batch sizes up to their build options meaning you can use an engine to benchmark multiple input configurations.

In order to benchmark the various networks, our engine building scheme is as follows:

  • For the GPT-J, Llama2-7b, and Llama2-70b benchmarks were ran using a single-setting engine build for each network configured for our maximum expected throughput.
  • For Falcon-180B, where memory limits and model size have a higher impact for running the model, our benchmarks transition to a per-configuration engine build.

Below we document how to benchmark each model on an H100-HBM3-80GB system and reproduce the throughput numbers we document on our [Performance section](#performance of-tensorrt-llm).

Running on A100

To run the benchmarks below on A100, you will need to remove the below fp8 quantization field from each config json file, because FP8 computation is a feature in H100 and newer GPUs.

"quantization": {
	"quant_algo": "FP8",
	"kv_cache_quant_algo": "FP8"
}

Reproducing First Token Latency

In order to test the latency to the first token, you can build the engines as specified below (or with the tweaks specified above on A100) -- once built as described in the build steps above, you can then benchmark with a single output token in order to find the time to first token latency. We provide the appropriate command lines below for each of the benchmarked models, but you can use this same method to benchmark other models available in TensorRT-LLM.

Benchmarking per Model

Warning

In some cases, using Group Query Attention (GQA) can improve performance of some networks. These kernels are currently experimental and not enabled by default. In order to enable them, simply run export TRTLLM_ENABLE_XQA=1 in your shell. The kernels are an inference runtime optimization, so previously built engines should still function. For the benchmarks below, we have enabled GQA where our tests displayed performance benefits. If your network is not listed below, be sure to try both GQA-enabled and GQA-disabled configurations to find the configuration that works best. For more details see our documentation about GPT Attention.

GPT-J 6B


Prepare a config json file /tmp/engines/gptj/ckpt_config.json:

{
    "architecture": "GPTJForCausalLM",
    "dtype": "float16",
    "num_hidden_layers": 28,
    "num_attention_heads": 16,
    "hidden_size": 4096,
    "norm_epsilon": 1e-05,
    "vocab_size": 50400,
    "position_embedding_type": "rope_gptj",
    "max_position_embeddings": 2048,
    "hidden_act": "gelu",
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    },
    "rotary_dim": 64
}

Build an engine:

trtllm-build --model_config /tmp/engines/gptj/ckpt_config.json \
	--output_dir /tmp/engines/gptj \
	--context_fmha enable \
	--gpt_attention_plugin float16 \
	--max_batch_size 64 \
	--max_input_len 2048 \
	--max_output_len 2048 \
	--strongly_typed

Throughput Benchmark

in_out_sizes=("64:128,128" "64:128,2048" "64:2048,128" "64:2048,2048")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --engine_dir /tmp/engines/gptj/ --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

First Token Latency Benchmark

in_out_sizes=("64:128,1" "64:2048,1")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --engine_dir /tmp/engines/gptj/ --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

Llama2-7b


Prepare a config json file /tmp/engines/llama/7b/ckpt_config.json:

{
    "architecture": "LlamaForCausalLM",
    "dtype": "float16",
    "num_hidden_layers": 32,
    "num_attention_heads": 32,
    "hidden_size": 4096,
    "intermediate_size": 11008,
    "num_key_value_heads": 32,
    "vocab_size": 32000,
    "position_embedding_type": "rope_gpt_neox",
    "max_position_embeddings": 4096,
    "hidden_act": "silu",
    "rotary_base": 10000.0,
    "rotary_scaling": null,
    "norm_epsilon": 1e-05,
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    }
}

Build an engine:

pip install -r examples/llama/requirements.txt
trtllm-build --model_config /tmp/engines/llama/7b/ckpt_config.json \
	--output_dir /tmp/engines/llama/7b \
	--remove_input_padding enable \
	--context_fmha enable \
	--gpt_attention_plugin float16 \
	--max_batch_size 64 \
	--max_input_len 2048 \
	--max_output_len 2048 \
	--strongly_typed

Throughput Benchmark

in_out_sizes=("64:128,128" "64:128,2048" "64:2048,128" "32:2048,2048")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --engine_dir /tmp/engines/llama/7b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

First Token Latency Benchmark

in_out_sizes=("64:128,1" "32:2048,1")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	./cpp/build/benchmarks/gptSessionBenchmark --engine_dir /tmp/engines/llama/7b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

Llama2-70b


Prepare a config json file /tmp/engines/llama/70b/ckpt_config.json:

{
    "architecture": "LlamaForCausalLM",
    "dtype": "float16",
    "num_hidden_layers": 80,
    "num_attention_heads": 64,
    "hidden_size": 8192,
    "intermediate_size": 28672,
    "num_key_value_heads": 8,
    "vocab_size": 32000,
    "position_embedding_type": "rope_gpt_neox",
    "max_position_embeddings": 4096,
    "hidden_act": "silu",
    "rotary_base": 10000.0,
    "rotary_scaling": null,
    "norm_epsilon": 1e-05,
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    },
    "mapping": {
        "world_size": 4,
        "tp_size": 4,
        "pp_size": 1
    }
}

Build an engine:

pip install -r examples/llama/requirements.txt
trtllm-build --model_config /tmp/engines/llama/70b/ckpt_config.json \
	--output_dir /tmp/engines/llama/70b \
	--workers 4 \
	--remove_input_padding enable \
	--context_fmha enable \
	--gpt_attention_plugin float16 \
	--max_batch_size 64 \
	--max_input_len 2048 \
	--max_output_len 2048 \
	--strongly_typed

Throughput Benchmark

export TRTLLM_ENABLE_XQA=1
in_out_sizes=("64:128,128" "64:128,2048" "64:2048,128" "64:2048,2048")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	mpirun -n 4 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --engine_dir /tmp/engines/llama/70b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

First Token Latency Benchmark

export TRTLLM_ENABLE_XQA=1
in_out_sizes=("64:128,1" "64:128,1")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	echo "BS: $batch_size, ISL/OSL: $in_out_dims"

	mpirun -n 4 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --engine_dir /tmp/engines/llama/70b --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len $in_out_dims
done

Falcon-180B


Benchmarking Falcon-180B requires a custom engine per batch size, input/output sequence length due to the large footprint of the model and the large input size of 2048. You can build and benchmark each engine one at a time with the following loop.

Prepare a config json file /tmp/engines/falcon/180b/ckpt_config.json:

{
    "architecture": "FalconForCausalLM",
    "dtype": "bfloat16",
    "num_hidden_layers": 80,
    "num_attention_heads": 232,
    "num_key_value_heads": 8,
    "hidden_size": 14848,
    "norm_epsilon": 1e-05,
    "vocab_size": 65024,
    "position_embedding_type": "rope_gpt_neox",
    "max_position_embeddings": 2048,
    "hidden_act": "gelu",
    "use_parallel_embedding": false,
    "embedding_sharding_dim": 0,
    "share_embedding_table": false,
    "quantization": {
        "quant_algo": "FP8",
        "kv_cache_quant_algo": "FP8"
    },
    "mapping": {
        "world_size": 8,
        "tp_size": 8,
        "pp_size": 1
    },
    "bias": false,
    "parallel_attention": true,
    "new_decoder_architecture": true
}
export TRTLLM_ENABLE_XQA=1
# Benchmark specific batch size:isl:osl combinations.
in_out_sizes=("96:128,128" "96:128,2048" "64:2048,128")
for in_out in ${in_out_sizes[@]}
do
	batch_size=$(echo $in_out | awk -F':' '{ print $1 }')
	in_out_dims=$(echo $in_out | awk -F':' '{ print $2 }')
	isl=$(echo $in_out_dims | awk -F',' '{ print $1 }')
	osl=$(echo $in_out_dims | awk -F',' '{ print $2 }')
	engine_path="/tmp/engines/falcon/180b/${batch_size}_${isl}_${osl}"
	echo "BS: $batch_size, ISL/OSL: ${isl},${osl}"

	# Build the specific engine for the BS,ISL,OSL combination
	trtllm-build --model_config /tmp/engines/falcon/180b/ckpt_config.json \
		--output_dir $engine_path \
		--workers 8 \
		--remove_input_padding enable \
		--context_fmha enable \
		--gpt_attention_plugin bfloat16 \
		--gemm_plugin bfloat16 \
		--paged_kv_cache enable \
		--max_batch_size $batch_size \
		--max_input_len $isl \
		--max_output_len $osl \
		--strongly_typed

	# Throughput benchmark
	mpirun -n 8 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --engine_dir $engine_path --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len "${isl},${osl}"
	# Time to first token benchmark
	mpirun -n 8 --allow-run-as-root --oversubscribe ./cpp/build/benchmarks/gptSessionBenchmark --engine_dir $engine_path --warm_up 1 --batch_size $batch_size --duration 0 --num_runs 5 --input_output_len "${isl},1"

	# The Falcon-180b engine is quite large, remove after the benchmark to free up space
	# Remove this line if you'd like to save the engines.
	rm -r $engine_path
done