-
Notifications
You must be signed in to change notification settings - Fork 140
/
opennurbs_convex_poly.cpp
1251 lines (1108 loc) · 29.3 KB
/
opennurbs_convex_poly.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// Copyright (c) 1993-2022 Robert McNeel & Associates. All rights reserved.
// OpenNURBS, Rhinoceros, and Rhino3D are registered trademarks of Robert
// McNeel & Associates.
//
// THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
// ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE AND OF
// MERCHANTABILITY ARE HEREBY DISCLAIMED.
//
// For complete openNURBS copyright information see <http://www.opennurbs.org>.
//
////////////////////////////////////////////////////////////////
#include "opennurbs.h"
#if !defined(ON_COMPILING_OPENNURBS)
// This check is included in all opennurbs source .c and .cpp files to insure
// ON_COMPILING_OPENNURBS is defined when opennurbs source is compiled.
// When opennurbs source is being compiled, ON_COMPILING_OPENNURBS is defined
// and the opennurbs .h files alter what is declared and how it is declared.
#error ON_COMPILING_OPENNURBS must be defined when compiling opennurbs
#endif
ON_3dSimplex::ON_3dSimplex() { m_n = 0; }
/* this function checks the validity of ClosetPoint results*/
bool ClosestPointIsValid(const ON_ConvexPoly& AHull, const ON_ConvexPoly& BHull,
ON_4dex Adex, ON_4dex Bdex, ON_4dPoint ABBary, double atmost, ON_TextLog* log = nullptr);
ON_3dSimplex::ON_3dSimplex(const ON_3dPoint& a) { m_n = 1; m_V[0] = a; }
ON_3dSimplex::ON_3dSimplex(const ON_3dPoint& a, const ON_3dPoint& b) { m_n = 2; m_V[0] = a; m_V[1] = b; }
ON_3dSimplex::ON_3dSimplex(const ON_3dPoint& a, const ON_3dPoint& b, const ON_3dPoint& c) { m_n = 3; m_V[0] = a; m_V[1] = b; m_V[2] = c; }
ON_3dSimplex::ON_3dSimplex(const ON_3dPoint& a, const ON_3dPoint& b, const ON_3dPoint& c, const ON_3dPoint& d) { m_n = 4; m_V[0] = a; m_V[1] = b; m_V[2] = c; m_V[3] = d; }
int ON_3dSimplex::Count() const { return m_n; };
bool ON_3dSimplex::IsValid(double eps) const // true if the Verticies are affinely independent
{
bool rc = true;
if (m_n >= 2)
{
ON_3dVector V = m_V[1] - m_V[0];
if( m_n==2)
rc = ( V.Length() > eps );
else
{
ON_3dVector W = m_V[2] - m_V[0];
ON_3dVector X = ON_CrossProduct(V, W);
// TODO put something smart here....
if( m_n==3)
rc = (X.Length() > eps);
else
{
// TODO and here....
double triple = X * (m_V[3] - m_V[0]);
rc = (fabs(triple) > eps);
}
}
}
return rc;
}
const ON_3dPoint& ON_3dSimplex::operator[](int i) const {
return *reinterpret_cast<const ON_3dPoint*>(m_V + i);
}
ON_3dPoint& ON_3dSimplex::operator[](int i) {
return *reinterpret_cast<ON_3dPoint*>(m_V + i);
}
ON_3dPoint ON_3dSimplex::Vertex(int i) const { return ON_3dPoint(m_V[i]); }
ON_3dPoint& ON_3dSimplex::Vertex(int i) { return *reinterpret_cast<ON_3dPoint*>(&m_V[i]); }
ON_3dPoint ON_3dSimplex::Evaluate(const double* b) const
{
ON_3dVector p(0, 0, 0);
for (int i = 0; i < m_n; i++)
p += b[i] * m_V[i];
return p;
}
ON_3dPoint ON_3dSimplex::Evaluate(const ON_4dPoint& b) const { return Evaluate(&b.x); }
double ON_3dSimplex::Volume() const
{
double vol = 0.0;
int n = Count();
if (n >= 2)
{
ON_3dVector V = m_V[1] - m_V[0];
if (n == 2)
vol = V.Length();
else
{
ON_3dVector X = ON_CrossProduct(V, m_V[2]-m_V[0]);
if (n == 3)
vol = 0.5 * X.Length();
else
vol = 1.0/6.0 * fabs(X*(m_V[3] - m_V[0]));
}
}
return vol;
}
double ON_3dSimplex::SignedVolume() const
{
double vol = ON_UNSET_VALUE;
if (Count() == 3)
{
ON_3dVector V = m_V[1] - m_V[0];
ON_3dVector X = ON_CrossProduct(V, m_V[2] - m_V[0]);
vol = 1.0 / 6.0 * (X*(m_V[3] - m_V[0]));
}
return vol;
}
double ON_3dSimplex::MaximumCoordinate() const
{
double max = 0.0;
for (int i = 0; i < Count(); i++)
{
double m = m_V[i].MaximumCoordinate();
if (m > max)
max = m;
}
return max;
}
ON_BoundingBox ON_3dSimplex::BoundingBox() const
{
ON_BoundingBox box;
box.Set(3, false, m_n, 3, m_V[0], false);
return box;
}
bool ON_3dSimplex::GetBoundingBox(
ON_BoundingBox& bbox, int bGrowBox ) const
{
return bbox.Set(3, false, m_n, 3, m_V[0], bGrowBox);
}
bool ON_3dSimplex::GetTightBoundingBox(
ON_BoundingBox& tight_bbox, bool bGrowBox,
const ON_Xform* xform ) const
{
if (bGrowBox && !tight_bbox.IsValid())
{
bGrowBox = false;
}
if (!bGrowBox)
{
tight_bbox.Destroy();
}
int i;
for (i = 0; i < m_n; i++)
{
if (ON_GetPointListBoundingBox(3, 0, m_n, 3, m_V[i], tight_bbox, bGrowBox, xform))
bGrowBox = true;
}
return bGrowBox ? true : false;
}
bool ON_3dSimplex::Transform(
const ON_Xform& xform)
{
for (int i = 0; i < m_n; i++)
m_V[i].Transform(xform);
return true;
}
bool ON_3dSimplex::Rotate(
double sin_angle,
double cos_angle,
const ON_3dVector& axis_of_rotation,
const ON_3dPoint& center_of_rotation)
{
ON_Xform R;
R.Rotation(sin_angle, cos_angle, axis_of_rotation, center_of_rotation);
return Transform(R);
}
bool ON_3dSimplex::Rotate(
double angle_in_radians,
const ON_3dVector& axis_of_rotation,
const ON_3dPoint& center_of_rotation )
{
ON_Xform R;
R.Rotation(angle_in_radians, axis_of_rotation, center_of_rotation);
return Transform(R);
}
bool ON_3dSimplex::Translate( const ON_3dVector& delta )
{
ON_Xform T = ON_Xform::TranslationTransformation(delta);
return Transform(T);
}
bool ON_3dSimplex::RemoveVertex(int i)
{
bool rc = false;
if (i < m_n)
{
m_n--;
for (/**/; i < m_n; i++)
m_V[i] = m_V[i + 1];
}
return rc;
}
bool ON_3dSimplex::AddVertex(const ON_3dPoint& P)
{
bool rc = false;
if (m_n < 4)
{
m_V[m_n++] = P;
}
return rc;
}
bool ON_3dSimplex::SetVertex(int i, ON_3dPoint P0)
{
bool rc = false;
if (i >= 0 && i < Count())
{
m_V[i] = P0;
// todo clear any cashed data
rc = true;
}
return rc;
}
ON_3dVector ON_3dSimplex::Edge(int e0, int e1) const
{
ON_3dVector V = ON_3dVector::UnsetVector;
if (e0 < Count() && e1 < Count())
{
V = Vertex(e1) - Vertex(e0);
}
return V;
}
/*
This is a carefull implementation of cross product that tries to get an accurate result
*/
ON_3dVector ON_CrossProductwCare(const ON_3dVector& A, ON_3dVector& B)
{
double norm[3];
norm[0] = A.MaximumCoordinate();
norm[1] = B.MaximumCoordinate();
ON_3dVector AxB = ON_CrossProduct(A, B);
const double thresh = 1.0e-8; // sin(A,B) ~< thresh^(1/2)
double ab = norm[0] * norm[1];
double ab2 = ab * ab;
if (AxB.LengthSquared() < ab2*thresh)
{
// TODO - this is a good start but we could do something better...
ON_3dVector V[3] = { A, B, A - B };
norm[2] = V[2].MaximumCoordinate();
int maxi = (norm[0] > norm[1]) ? 0 : 1;
if (norm[2] < norm[maxi]) // else C is longest so we are done.
{
AxB = ON_CrossProduct(V[(maxi + 1) % 3], V[(maxi + 2) % 3]);
if (maxi == 0)
AxB = - AxB;
}
}
return AxB;
}
ON_3dVector ON_3dSimplex::FaceNormal(int noti) const
{
ON_3dVector N = ON_3dVector::UnsetVector;
if (Count() == 3 || (Count() == 4 && noti <= 3 && noti >= 0))
{
int ind[3] = { 0,1,2 };
if (Count() == 4 && noti < 3)
{
for (int ii = 0; ii < 3; ii++)
ind[ii] = (noti + 1 + ii) % 4;
}
ON_3dVector A = Vertex(ind[1]) - Vertex(ind[0]);
ON_3dVector B = Vertex(ind[2]) - Vertex(ind[0]);
N = ON_CrossProductwCare(A, B );
}
return N;
}
ON_3dVector ON_3dSimplex::FaceUnitNormal(int noti) const
{
ON_3dVector N = FaceNormal(noti);
if (N != ON_3dVector::UnsetVector && N != ON_3dVector::ZeroVector)
N.Unitize();
return N;
}
bool ON_3dSimplex::GetClosestPoint(const ON_3dPoint& P0, ON_4dPoint& Bary, double atmost) const
{
ON_3dVector V = P0;
ON_3dSimplex Trans;
bool toofar = ((atmost <= 0.0) ? false : true);
bool rval = false;
for (int i = 0; i < Count(); i++)
{
Trans.AddVertex(Vertex(i) - V);
if (toofar && Trans[i].MaximumCoordinate() < .5 * atmost)
toofar = false;
}
if (!toofar)
{
rval = Trans.GetClosestPointToOrigin(Bary);
if (rval && atmost >= 0)
{
ON_3dVector CP = Trans.Evaluate(Bary);
if (CP.LengthSquared() > atmost*atmost)
rval = false;
}
}
return rval;
}
bool ON_3dSimplex::GetClosestPointToOrigin(ON_4dPoint& Bary) const
{
bool rc = false;
if (m_n == 4)
rc = Closest3plex(Bary);
else if (m_n == 3)
rc = Closest2plex(Bary);
else if (m_n == 2)
rc = Closest1plex(Bary);
else if (m_n == 1)
{
Bary = ON_4dPoint(1.0, 0, 0, 0);
rc = true;
}
return rc;
}
// return true if a and b are non zero and of same sign
static bool SameSign(double a, double b)
{
return (a*b) > 0;
}
// closest point to a 1-simplex
bool ON_3dSimplex::Closest1plex(ON_4dPoint& Bary) const
{
bool rc = false;
ON_3dVector Del = m_V[1] - m_V[0];
double Del2 = Del.LengthSquared();
if (Del2 > 0.0)
{
rc = true;
double dot = -m_V[0] * Del;
if (dot >= Del2)
Bary = ON_4dPoint(0, 1, 0, 0);
else if (dot <= 0)
Bary = ON_4dPoint(1, 0, 0, 0);
else
{
double b0 = dot / Del2;
b0 = 1 - (1 - b0); // ensure b0 + ( 1- b0) == 1.0 without rounding
Bary = ON_4dPoint(1 - b0, b0, 0, 0);
}
}
return rc;
}
// Rounds barycentric coordinates so that the coordinates sum to 1.0 in exact arithmetic.
bool ON_3dSimplex::RoundBarycentricCoordinate(ON_4dPoint& Bary)
{
int mini = -1;
double minc = ON_UNSET_VALUE;
for (int i = 0; i < 4; i++)
{
if (Bary[i] == 0.0) continue;
Bary[i] = 1 - (1 - Bary[i]);
if (mini < 0 || Bary[i] < minc)
{
mini = i;
minc = Bary[i];
}
}
if (mini >= 0)
{
Bary[mini] = 1.0 - (Bary[(mini + 1) % 4] + Bary[(mini + 2) % 4] + Bary[(mini + 3) % 4]);
}
return true;
}
// closest point to origin for a 2-simplex
bool ON_3dSimplex::Closest2plex(ON_4dPoint& Bary) const
{
bool rc = false;
ON_3dVector N = FaceNormal();
double N2 = N.LengthSquared();
if (N2 > 0)
{
ON_3dPoint P3 = (m_V[0] * N)*N / N2; // origin projected to Affine_Span < V_0, V_1, V_2 >
int J = N.MaximumCoordinateIndex();
ON_3dPoint Planar[3]; // We reduce to a planar closest point to origin problem
for (int i = 0; i < 3; i++)
Planar[i] = Vertex(i) - P3;
// Finding the barycentric coordintes of the origin will guild the rest of the algorithm
// We simplify this by projecting to Not J plane
double DetM = 0.0;
double C3[3];
int j0 = (J + 1) % 3;
int j1 = (J + 2) % 3;
for (int i = 0; i < 3; i++)
{
int i0 = (i + 1) % 3;
int i1 = (i + 2) % 3;
C3[i] = Planar[i0][j0] * Planar[i1][j1] - Planar[i1][j0] * Planar[i0][j1];
DetM += C3[i];
}
if (DetM != 0.0)
{
bool interior = true;
for (int j = 0; interior && j < 3; j++)
interior = SameSign(DetM, C3[j]);
Bary[3] = 0.0;
if (interior)
{
for (int i = 0; i < 3; i++)
Bary[i] = C3[i] / DetM;
RoundBarycentricCoordinate(Bary);
rc = true;
}
else
{
for (int j = 0; j < 3; j++)
{
if (!SameSign(DetM, C3[j]))
{
ON_3dSimplex S(Planar[(j + 1) % 3], Planar[(j + 2) % 3]); // S is a 1-simplex
ON_4dPoint bary;
if (S.GetClosestPointToOrigin(bary))
{
rc = true;
bool OnEnd = (bary[0] == 1.0 || bary[1] == 1.0);
Bary[j] = 0.0;
Bary[3] = 0.0;
for (int i = 0; i < 2; i++)
Bary[(j + 1 + i) % 3] = bary[i];
if (!OnEnd)
break;
}
}
}
}
}
}
return rc;
}
// closest point to a 3-simplex
bool ON_3dSimplex::Closest3plex(ON_4dPoint& Bary) const
{
bool rc = false;
// Solving
// [ V_0 V_1 V_2 V_3 ] [ 0 ]
// M*B = [ 1 1 1 1 ] * B = [ 1 ]
int ind[3] = { 1,2,3 };
double detM = 0.0;
double C4[4]; // C4[j] = C_{4,j} is a cofactor of M
double sign = 1.0;
for (int j = 0; j < 4; j++)
{
C4[j] = sign * ON_TripleProduct(m_V[ind[0]], m_V[ind[1]], m_V[ind[2]]);
if (j < 3)
{
ind[j] = j; // {1,2,3}, {0,2,3}, {0,1,3}, {0,1,2}
sign *= -1.0;
}
detM += C4[j];
}
if (detM != 0.0)
{
bool interior = true;
int j = 0;
for (j = 0; interior && j < 4; j++)
interior = SameSign(detM, C4[j]);
if (interior)
{
for (int i = 0; i < 4; i++)
Bary[i] = C4[i] / detM;
RoundBarycentricCoordinate(Bary);
rc = true;
}
else
{
j--;
double D2 = ON_DBL_MAX; // best answer so far
int N = 5; // size of support
do
{
if (!SameSign(detM, C4[j]))
{
ON_3dSimplex S = (*this);
S.RemoveVertex(j);
ON_4dPoint bary;
if (S.Closest2plex(bary))
{
int n = 0; // size of support
for (int i = 0; i < 3; i++) if (bary[i] > 0)n++;
if (n == 3)
{
for (int i = 3; i > j; i--)
bary[i] = bary[i - 1];
bary[j] = 0.0;
Bary = bary;
rc = true;
break;
}
else
{
ON_3dVector cp = S.Evaluate(bary);
double d2 = cp.LengthSquared();
if (d2 < D2 || (d2 == D2 && n < N))
{
D2 = d2;
N = n;
for (int i = 3; i > j; i--)
bary[i] = bary[i - 1];
bary[j] = 0.0;
rc = true;
Bary = bary;
}
}
}
else
rc = false;
}
} while (++j < 4);
}
}
return rc;
}
bool ON_ConvexPoly::Standardize(ON_4dex& dex, ON_4dPoint& B)
{
bool rc = true;
ON_4dex rdex = { -1,-1,-1,-1 }; // results
ON_4dPoint rB(0, 0, 0, 0);
int ri = 0; // index into result
for (int ii = 0; ii < 4; ii++) // index in input
{
while ((dex[ii] < 0 || B[ii] == 0.0) && ii < 4) ii++;
if (ii == 4)
break;
int j = 0;
while (j < ri && rdex[j] != dex[ii]) j++;
if (j == ri)
{
rdex[ri] = dex[ii];
rB[ri++] = 0.0;
}
rB[j] += B[ii];
}
if (rc)
{
dex = rdex;
B = rB;
}
return rc;
}
/**/
void ON_ConvexHullRefEx::Initialize(const ON_3dVector* V0, int n)
{
m_n = n;
m_dim = 3;
m_v = *V0;
m_is_rat = false;
m_stride = 3;
}
void ON_ConvexHullRefEx::Initialize(const ON_4dPoint* V0, int n)
{
m_n = n;
m_v = *V0;
m_dim = 3;
m_is_rat = true;
m_stride = 4;
}
// style must be either not_rational or homogeneous_rational = 2,
void ON_ConvexHullRefEx::Initialize(const double* V0, ON::point_style style, int count)
{
if (style == ON::homogeneous_rational)
Initialize(reinterpret_cast<const ON_4dPoint*>(V0), count);
else
Initialize(reinterpret_cast<const ON_3dVector*>(V0), count);
}
ON_ConvexHullRefEx::ON_ConvexHullRefEx(const ON_3dVector* V0, int n)
{
m_n = n;
m_dim = 3;
m_v = *V0;
m_is_rat = false;
m_stride = 3;
}
ON_ConvexHullRefEx::ON_ConvexHullRefEx(const ON_3dPoint* P0, int n)
{
m_n = n;
m_dim = 3;
m_v = *P0;
m_is_rat = false;
m_stride = 3;
}
ON_ConvexHullRefEx::ON_ConvexHullRefEx(const ON_4dPoint* V0, int n)
{
m_n = n;
m_dim = 3;
m_v = *V0;
m_is_rat = true;
m_stride = 4;
}
ON_ConvexHullRefEx::ON_ConvexHullRefEx(const double* V0, bool is_rat, int n, int dim)
{
m_n = n;
m_dim = (dim>=0 && dim<4)?dim:0;
m_v = V0;
m_is_rat = is_rat;
m_stride = is_rat ? dim+1 : dim;
}
ON_ConvexHullRefEx::ON_ConvexHullRefEx(const double* V0, bool is_rat, int n, int dim, int stride)
{
m_n = n;
m_dim = (dim >= 0 && dim < 4) ? dim : 0;
m_v = V0;
m_is_rat = is_rat;
m_stride = (stride>m_dim+is_rat)? stride: m_dim + is_rat;
}
ON_3dVector ON_ConvexHullRefEx::Vertex(int j) const
{
ON_3dVector v(0,0,0);
for (int i = 0; i < m_dim; i++)
v[i] = m_v[j * m_stride + i];
if (m_is_rat )
{
double w = m_v[j * m_stride + m_dim];
if (w)
v *= (1.0 / w);
}
return v;
}
int ON_ConvexHullRefEx::SupportIndex(ON_3dVector W, int) const
{
int j0 = 0;
double dot = Vertex(0) * W;
for (int j = 1; j < m_n; j++)
{
ON_3dVector v = Vertex(j);
double d = v * W;
if (d > dot)
{
dot = d;
j0 = j;
}
}
return j0;
}
double ON_ConvexHullRefEx::MaximumCoordinate() const
{
return ON_MaximumCoordinate(m_v, m_dim, m_is_rat, m_n, m_stride);
}
/* ON_ConvexHullRef is DEEPRECATED because it doesn't work for 2d curves . Use ON_ConvexHellRefEx instead.*/
void ON_ConvexHullRef::Initialize(const ON_3dVector* V0, int n)
{
m_n = n;
m_v = *V0;
m_is_rat = false;
m_stride = 3;
}
void ON_ConvexHullRef::Initialize(const ON_4dPoint* V0, int n)
{
m_n = n;
m_v = *V0;
m_is_rat = true;
m_stride = 4;
}
// style must be either not_rational or homogeneous_rational = 2,
void ON_ConvexHullRef::Initialize(const double* V0, ON::point_style style, int count)
{
if (style == ON::homogeneous_rational)
Initialize(reinterpret_cast<const ON_4dPoint*>(V0), count);
else
Initialize(reinterpret_cast<const ON_3dVector*>(V0), count);
}
ON_ConvexHullRef::ON_ConvexHullRef(const ON_3dVector* V0, int n)
{
m_n = n;
m_v = *V0;
m_is_rat = false;
m_stride = 3;
}
ON_ConvexHullRef::ON_ConvexHullRef(const ON_3dPoint* P0, int n)
{
m_n = n;
m_v = *P0;
m_is_rat = false;
m_stride = 3;
}
ON_ConvexHullRef::ON_ConvexHullRef(const ON_4dPoint* V0, int n)
{
m_n = n;
m_v = *V0;
m_is_rat = true;
m_stride = 4;
}
ON_ConvexHullRef::ON_ConvexHullRef(const double* V0, bool is_rat, int n)
{
m_n = n;
m_v = V0;
m_is_rat = is_rat;
m_stride = is_rat ? 4 : 3;
}
ON_ConvexHullRef::ON_ConvexHullRef(const double* V0, bool is_rat, int n, int stride)
{
m_n = n;
m_v = V0;
m_is_rat = is_rat;
m_stride = stride;
}
ON_3dVector ON_ConvexHullRef::Vertex(int j) const
{
ON_3dVector v;
if (m_is_rat)
{
ON_4dPoint hv = *(reinterpret_cast<const ON_4dPoint*>(m_v + m_stride*j));
v = ON_3dVector(hv.EuclideanX(), hv.EuclideanY(), hv.EuclideanZ());
}
else
{
v = *(reinterpret_cast<const ON_3dVector*>(m_v + m_stride*j));
}
return v;
}
int ON_ConvexHullRef::SupportIndex(ON_3dVector W, int) const
{
int j0 = 0;
double dot = Vertex(0)*W;
for (int j = 1; j < m_n; j++)
{
ON_3dVector v = Vertex(j);
double d = v * W;
if (d > dot)
{
dot = d;
j0 = j;
}
}
return j0;
}
double ON_ConvexHullRef::MaximumCoordinate() const
{
return ON_MaximumCoordinate(m_v, 3, m_is_rat, m_n);
}
int ON_ConvexHullPoint2::AppendVertex(const ON_3dPoint& P) // return index of new vertex. must set Adjacent Indicies.
{
m_Vert.Append(P);
Ref.Initialize(m_Vert, m_Vert.Count());
return m_Vert.Count()-1;
}
void ON_ConvexHullPoint2::Empty()
{
Ref.Initialize(m_Vert, 0);
m_Vert.Empty();
}
double ON_ConvexHullPoint2::MaximumCoordinate() const
{
return ON_MaximumCoordinate(m_Vert[0], 3, false, m_Vert.Count());
}
bool ON_ConvexPoly::GetClosestPointSeeded(ON_3dPoint P0,
ON_4dex& dex, ON_4dPoint& Bary, double atmost ) const
{
ON_ConvexHullRefEx CvxPt(&P0, 1); // TODO don't use ON_ConvexHullRefEx
// Set pdex to match the support of dex
ON_4dex pdex = dex;
for (int i = 0; i < 4; i++)
{
if (dex[i] >= 0)
pdex[i] = 0;
}
bool rc = GetClosestPointSeeded(CvxPt, dex, pdex, Bary, atmost);
ON_ConvexPoly::Standardize(dex, Bary);
return rc;
}
// MatchingSupport(A, B) retuns a positive number if
// A[i]<0 iff B[i]<0 and at least one coordinate pair has valid indicies A[i]>=0 and B[i]>=0.
static int MatchingSupport(const ON_4dex& A, const ON_4dex& B)
{
int nsup = 0;
int i =0;
for (; i < 4; i++)
{
if ((A[i] < 0) != (B[i] < 0))
break;
if (A[i] >= 0)
nsup++;
}
return (i == 4) ? nsup : -1;
}
// Gilbert Johnson Keerthi algorithm
bool ON_ConvexPoly::GetClosestPoint(const ON_ConvexPoly& B,
ON_4dex& Adex, ON_4dex& Bdex, ON_4dPoint& bary,
double maximum_distance) const
{
Adex = Bdex = ON_4dex::Unset;
return GetClosestPointSeeded(B, Adex, Bdex, bary, maximum_distance);
};
bool ON_ConvexPoly::GetClosestPoint(ON_3dPoint P0,
ON_4dex& dex, ON_4dPoint& bary,
double maximum_distance ) const
{
dex = ON_4dex::Unset;
return GetClosestPointSeeded(P0, dex, bary, maximum_distance);
}
// Class for a pair of simplicies from a pair of ON_ConvexPoly's
class GJK_Simplex
{
public:
ON_3dSimplex Simp; // Minkowski sum simplex A - B
ON_4dPoint Bary = ON_4dPoint::Zero; // represents a point in Simp
int Aind[4] = { -1,-1,-1,-1 };
int Bind[4] = { -1,-1,-1,-1 };
// Append new vertex at end
bool AddVertex(const ON_3dVector& v, int aind, int bind);
bool RemoveVertex(int i); // index of vertex pair to remove
bool Includes(int aind, int bind); // true if (aind, bind) is a vertex pair in this simplex
};
bool GJK_Simplex::AddVertex(const ON_3dVector& v, int aind, int bind)
{
bool rc = false;
int n0 = Simp.Count();
if (n0 < 4)
{
Simp.AddVertex(v);
Aind[n0] = aind;
Bind[n0] = bind;
if (n0 > 0)
Bary[n0] = 0.0;
else
Bary[n0] = 1.0;
rc = true;
}
return rc;
}
bool GJK_Simplex::RemoveVertex(int i)
{
bool rc = false;
int n0 = Simp.Count();
if (i < n0)
{
Simp.RemoveVertex(i);
for (int j = i; j < n0-1; j++)
{
Bary[j] = Bary[j + 1];
Aind[j] = Aind[j + 1];
Bind[j] = Bind[j + 1];
}
Bary[n0-1] = 0.0;
Aind[n0-1] = Bind[n0-1] = -1;
}
return rc;
}
bool GJK_Simplex::Includes(int aind, int bind) // true if (aind, bind) is a vertex pair in this simplex
{
int n0 = Simp.Count();
for (int i = 0; i < n0; i++)
if (Aind[i] == aind && Bind[i] == bind)
return true;
return false;
}
// To supply an inital seed simplex Adex and Bdex must be valid and
// have matching support specifically
// Adex[i]<A.Count() and Bdex[i]<B.Count() for all i
// Adex[i]<0 iff Bdex[i]<0 for all i
// Adex[i]>=0 for some i for some i
// By satisfying this condition Adex and Bdex will define a simplex in A - B
// Note: As a result of a ClosestPoint calculation Adex and Bdex satisfy these conditions.
bool ON_ConvexPoly::GetClosestPointSeeded(const ON_ConvexPoly& B,
ON_4dex& Adex, ON_4dex& Bdex, ON_4dPoint& Bary,
double atmost) const
{
const ON_ConvexPoly& A = *this;
bool rc = false;
if (Count() == 0 || B.Count() == 0)
return false;
GJK_Simplex GJK;
ON_3dVector v(0,0,0);
// If Adex and Bdex are valid on entry we use them as an inital
// seed for the trial simplex. This case is indicated by setting
// bFirstPass
bool bFirstPass = false;
if (A.IsValid4Dex(Adex) && B.IsValid4Dex(Bdex) && MatchingSupport(Adex, Bdex)>0 )
{
// Set the initial condition for GJK from Adex and Bdex
int i = 0;
for (i = 0; i < 4; i++)
{
if (Adex[i] < 0 || Bdex[i] < 0)
continue;
if (GJK.Includes(Adex[i], Bdex[i]))
break;
ON_3dVector vert = Vertex(Adex[i]) - B.Vertex(Bdex[i]);
GJK.AddVertex(vert, Adex[i], Bdex[i]);
}
bFirstPass = (i==4);
}
bool done = false;
double vlen = ON_DBL_MAX;
double vlenlast = ON_DBL_MAX;
while (!done)
{
if (!bFirstPass)
{
// Default initial simplex is a point A.Vertex(0) - B.Vertex(0);
v = A.Vertex(0) - B.Vertex(0);
GJK.AddVertex(v, 0, 0);
GJK.Bary[0] = 1.0;
vlenlast = ON_DBL_MAX;
vlen = v.Length();
}
double mu = 0.0;
const double epsilon = 10000.0 * ON_EPSILON;
int wA = 0, wB = 0;