-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRAY_train_from_config.py
140 lines (97 loc) · 4.65 KB
/
RAY_train_from_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import os
import json
from datetime import datetime
import gym
import gym_malware
from gym_malware.envs.utils import interface
import ray
from ray import air, tune
#import tensorflow as tf
#gpus = tf.config.experimental.list_physical_devices('GPU')
#for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
# How to run
# python RAY_train_from_config.py
# --agent=DQN
# --params=/home/matous/Documents/CVUT_FIT/1_DP/diploma-thesis/src/AMG/analyze_ray_tune_training/best_params/DQN_malware-train-ember-v0_8ef5c_00000_0_gamma=0.8046,lr=0.0007_2022-11-12_21-28-26/params.json
# --num-worker=1 --criteria=training_iteration --stop-value=2
parser = argparse.ArgumentParser()
parser.add_argument("--agent", required=True, type=str, help="Name of the agent: [DQN, PPO, etc.].")
parser.add_argument("--name", type=str, default="RAY_train", help="Name of the experiment.")
parser.add_argument("--params", type=str, required=True, help="Path to 'params.json' config.")
parser.add_argument("--checkpoint", type=str, help="Path to checkpoint with trained agent.")
parser.add_argument("--num-cpus", type=int, default=4)
parser.add_argument("--num-gpus", type=int)
parser.add_argument("--num-workers", type=int)
parser.add_argument("--criteria", type=str, default="training_iteration", choices={"timesteps_total", "training_iteration"}) #"time_total_s"
parser.add_argument("--stop-value", type=int, default=1000)
if __name__ == "__main__":
args = parser.parse_args()
print(args)
timelog = (str(datetime.date(datetime.now())) + "_" + str(datetime.time(datetime.now())))
ray.init(num_cpus=args.num_cpus or None, num_gpus=args.num_gpus or None)
# Config from file
config = {}
with open(args.params) as json_file:
config = json.load(json_file)
# config["train_batch_size"] = 128 # For debugging
# Rewrite params if params provided
if args.num_gpus:
config["num_gpus"] = args.num_gpus
if args.num_workers:
config["num_workers"] = args.num_workers
ENV_NAME = config["env"]
metric = "episode_reward_mean"
mode = "max"
# Stop criterion
stop = {args.criteria: args.stop_value}
RESULTS_DIR = f"RAY_TRAINING/{args.name}_{args.criteria}={args.stop_value}_ray_logs/{ENV_NAME}"
RESULTS_NAME = f"{args.agent}_{timelog}"
if not args.checkpoint:
# Run tune for some iterations and generate checkpoints.
tuner = tune.Tuner(
trainable=args.agent,
param_space=config,
run_config=air.RunConfig(
name=RESULTS_NAME,
local_dir=RESULTS_DIR,
stop=stop,
checkpoint_config=air.CheckpointConfig(
num_to_keep=10,
checkpoint_score_attribute=metric,
checkpoint_score_order=mode,
checkpoint_frequency=1,
checkpoint_at_end=True)
),
tune_config=tune.TuneConfig(
metric=metric,
mode=mode,
),
)
else:
print("restoring agent from checkpoint", args.checkpoint)
tuner = tune.Tuner.restore(args.checkpoint)
results = tuner.fit()
print(results.get_dataframe())
df = results.get_dataframe(filter_metric=metric, filter_mode=mode)
df.to_csv(f"{RESULTS_DIR}/{RESULTS_NAME}/results.csv", index = False)
best_result = results.get_best_result(metric=metric, mode=mode)
metrics_df = best_result.metrics_dataframe
print(metrics_df[metric])
metrics_df.to_csv(f"{RESULTS_DIR}/{RESULTS_NAME}/results_metrics.csv", index = False)
idx_best_metric = best_result.metrics_dataframe[metric].idxmax()
value_best_metric = best_result.metrics_dataframe[metric][idx_best_metric]
print(50*'#')
print("Best mean {} (over all ""iterations): {}".format(metric, value_best_metric))
# Confirm that we picked the right trial.
assert value_best_metric >= results.get_dataframe()[metric].max(), "Wrong checkpoint picked up, not with the highest score"
print("Provided params {}".format(args.params))
checkpoint_path = best_result.best_checkpoints[-1][0]._local_path
print("Best checkpoint {}".format(checkpoint_path))
value_best_metric = best_result.best_checkpoints[-1][1][metric]
print("Mean reward of best checkpoint {}".format(value_best_metric))
assert value_best_metric >= results.get_dataframe()[metric].max(), "Wrong checkpoint picked up, not with the highest score"
os.system(f"cp -rp {checkpoint_path} {RESULTS_DIR}/{RESULTS_NAME}/")
os.system(f"cp -p {args.params} {RESULTS_DIR}/{RESULTS_NAME}/")
print(50*'#')