diff --git a/theories/function_spaces.v b/theories/function_spaces.v index 628142d6a..d1754a5d2 100644 --- a/theories/function_spaces.v +++ b/theories/function_spaces.v @@ -1,7 +1,7 @@ (* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) From HB Require Import structures. From mathcomp Require Import all_ssreflect all_algebra finmap generic_quotient. -From mathcomp Require Import boolp classical_sets functions. +From mathcomp Require Import boolp classical_sets functions set_interval. From mathcomp Require Import cardinality mathcomp_extra fsbigop. From mathcomp Require Import reals signed topology separation_axioms. @@ -1436,6 +1436,16 @@ move=> v Kv; have [[P Q] [Px Qv] PQfO] : nbhs (x, v) (f @^-1` O). by exists (Q, P) => // -[b a] /= [Qb Pa] Kb; exact: PQfO. Unshelve. all: by end_near. Qed. +Lemma continuous_curryf (f : U * V -> W) : continuous f -> continuous (curry f). +Proof. by case/continuous_curry. Qed. + +Lemma continuous_curry_joint_cvg (f : U * V -> W) (u : U) (v : V) : + continuous f -> curry f z.1 z.2 @[z --> (u,v)] --> curry f u v. +Proof. +move=> cf D /cf; rewrite ?nbhs_simpl /curry /=; apply: filterS => z. +by move=> ?; rewrite /= -surjective_pairing. +Qed. + Lemma continuous_uncurry_regular (f : U -> V -> W) : locally_compact [set: V] -> @regular_space V -> continuous f -> (forall u, continuous (f u)) -> continuous (uncurry f). @@ -1544,3 +1554,1559 @@ Unshelve. all: by end_near. Qed. End cartesian_closed. End currying. + +Lemma swap_continuous {X Y : topologicalType} : continuous (@swap X Y). +Proof. +case=> a b W /=[[U V]][] /= Ua Vb UVW; exists (V, U); first by split. +by case => //= ? ? [] ? ?; apply: UVW. +Qed. + +Lemma min_continuous {d} {T : orderTopologicalType d} : + continuous (fun xy : T * T => Order.min xy.1 xy.2). +Proof. +case=> x y; case : (pselect (x = y)). + move=> <- U; rewrite /= min_l // => ux; exists (U, U) => //=. + case=> a b [/= ? ?]; case /orP : (le_total a b) => ?; first by rewrite min_l. + by rewrite min_r. +move=>/eqP; wlog xy : x y / (x < y)%O. + move=> WH /[dup] /lt_total/orP []; first exact: WH. + rewrite eq_sym; move=> yx yNx. + have -> : (fun (xy : T *T ) => Order.min xy.1 xy.2) = + ((fun xy => Order.min xy.1 xy.2) \o @swap T T). + apply/funext; case => a b /=; have /orP [? | ?] := le_total a b. + by rewrite min_l // min_r. + by rewrite min_r // min_l. + apply: continuous_comp; first exact: swap_continuous. + by apply: WH. +move=> _ U /=; (rewrite min_l //; last exact: ltW) => Ux. +case : (pselect (exists z, x < z < y)%O). + case=> z xzy; exists (U `&` `]-oo,z[, `]z,+oo[%classic) => //=. + - split; [apply: filterI =>// |]; apply: open_nbhs_nbhs; split. + + exact: lray_open. + + by rewrite set_itvE; case/andP: xzy. + + exact: rray_open. + + by rewrite set_itvE; case/andP: xzy. + - case=> a b /= [][Ua]; rewrite ?in_itv andbT /= => az ?. + by rewrite min_l //; apply: ltW; apply: (lt_trans az). +move/forallNP => /= xNy. +exists (U `&` `]-oo,y[, `]x,+oo[%classic) => //=. +- split; [apply: filterI =>// |]; apply: open_nbhs_nbhs; split. + + exact: lray_open. + + by rewrite set_itvE. + + exact: rray_open. + + by rewrite set_itvE. +- case=> a b /= [][Ua]; rewrite ?in_itv andbT /= => ay xb. + rewrite min_l //; rewrite leNgt; have := xNy b; apply: contra_notN. + move=> ba; apply/andP; split => //. + by apply: (lt_trans ba). +Qed. + +Lemma min_fun_continuous {d} {X : topologicalType} {T : orderTopologicalType d} + (f g : X -> T): + continuous f -> continuous g -> continuous (f \min g). +Proof. +move=> fc gc z; apply: continuous2_cvg; first apply min_continuous. + exact: fc. +exact: gc. +Qed. + +Lemma max_continuous {d} {T : orderTopologicalType d} : + continuous (fun xy : T * T => Order.max xy.1 xy.2). +Proof. +case=> x y; case : (pselect (x = y)). + move=> <- U; rewrite /= max_r // => ux; exists (U, U) => //=. + case=> a b [/= ? ?]; case /orP : (le_total a b) => ?; first by rewrite max_r. + by rewrite max_l. +move=>/eqP; wlog xy : x y / (x < y)%O. + move=> WH /[dup] /lt_total/orP []; first exact: WH. + rewrite eq_sym; move=> yx yNx. + have -> : (fun (xy : T *T ) => Order.max xy.1 xy.2) = + ((fun xy => Order.max xy.1 xy.2) \o @swap T T). + apply/funext; case => a b /=; have /orP [? | ?] := le_total a b. + by rewrite max_r // max_l. + by rewrite max_l // max_r. + apply: continuous_comp; first exact: swap_continuous. + by apply: WH. +move=> _ U /=; (rewrite max_r //; last exact: ltW) => Ux. +case : (pselect (exists z, x < z < y)%O). + case=> z xzy; exists (`]-oo,z[%classic, U `&` `]z,+oo[%classic) => //=. + - split; [|apply: filterI =>//]; apply: open_nbhs_nbhs; split. + + exact: lray_open. + + by rewrite set_itvE; case/andP: xzy. + + exact: rray_open. + + by rewrite set_itvE; case/andP: xzy. + - case=> a b /= [] + []; rewrite ?in_itv andbT /= => az ? zb. + by rewrite max_r //; apply: ltW; apply: (lt_trans az). +move/forallNP => /= xNy. +exists (`]-oo,y[%classic, U `&` `]x,+oo[%classic) => //=. +- split; [|apply: filterI =>//]; apply: open_nbhs_nbhs; split. + + exact: lray_open. + + by rewrite set_itvE. + + exact: rray_open. + + by rewrite set_itvE. +- case=> a b /=; rewrite ?in_itv /= andbT => [/=] [ay] [?] xb. + rewrite max_r //; rewrite leNgt; have := xNy b; apply: contra_notN. + move=> ba; apply/andP; split => //. + by apply: (lt_trans ba). +Qed. + +Lemma max_fun_continuous {d} {X : topologicalType} {T : orderTopologicalType d} + (f g : X -> T): + continuous f -> continuous g -> continuous (f \max g). +Proof. +move=> fc gc z; apply: continuous2_cvg; first apply max_continuous. + exact: fc. +exact: gc. +Qed. + +Lemma continuous_comp_weak {Y : choiceType} {X Z : topologicalType} (w : Y -> Z) + (f : X -> (weak_topology w)) : + continuous (w \o f) -> continuous f. +Proof. +move=> cf z U [?/= [[W oW <-]]] /= Wsfz /filterS; apply; apply: cf. +by apply: open_nbhs_nbhs; split. +Qed. + +Lemma uncurryK {X Y Z : Type} : cancel (@uncurry X Y Z) curry. +Proof. by move=> f; rewrite funeq2E => ? ?. Qed. + +Lemma curryK {X Y Z : Type} : cancel curry (@uncurry X Y Z). +Proof. by move=> f; rewrite funeqE; case=> ? ?. Qed. + +Section reassociate_products. +Context {X Y Z : Type}. +Definition left_assoc_prod (xyz : (X * Y) * Z) : X * (Y * Z) := + (xyz.1.1,(xyz.1.2,xyz.2)). + +Definition right_assoc_prod (xyz : X * (Y * Z)) : (X * Y) * Z := + ((xyz.1,xyz.2.1),xyz.2.2). + +Lemma left_assoc_prodK : cancel left_assoc_prod right_assoc_prod. +Proof. by case;case. Qed. + +Lemma right_assoc_prodK : cancel right_assoc_prod left_assoc_prod. +Proof. by case => ? []. Qed. +End reassociate_products. + +Section reassociate_continuous. +Context {X Y Z : topologicalType}. + +Lemma left_assoc_prod_continuous : continuous (@left_assoc_prod X Y Z). +Proof. +case;case=> a b c U [[/= P V]] [Pa] [][/= Q R][ Qb Rc] QRV PVU. +exists ((P `*` Q), R); first split. +- exists (P, Q); first split => //=. + by case=> x y /= [Px Qy]; split => //. +- done. +- case; case=> x y z /= [][] ? ? ?; apply: PVU; split => //. + exact: QRV. +Qed. + +Lemma right_assoc_prod_continuous : continuous (@right_assoc_prod X Y Z). +Proof. +case=> a [b c] U [[V R]] [/= [[P Q /=]]] [Pa Qb] PQV Rc VRU. +exists (P, (Q `*` R)); first split. +- done. +- exists (Q, R); first split => //=. + by case=> ? ? /= [? ?]; split. +- case=> x [y z] [? [? ?]]; apply: VRU; split => //. + exact: PQV. +Qed. + +End reassociate_continuous. + +Section composition. + +HB.instance Definition _ (U T : topologicalType) := + Topological.copy + (continuousType U T) + (weak_topology (id : continuousType U T -> {compact-open, U -> T})). + +Local Import ArrowAsCompactOpen. + +Definition eval {X Y : topologicalType} : continuousType X Y * X -> Y := + uncurry (id : continuousType X Y -> (X -> Y)). + +Lemma eval_continuous {X Y : topologicalType} : + locally_compact [set: X] -> regular_space X -> continuous (@eval X Y). +Proof. +move=> ? ?; apply: continuous_uncurry_regular => //. + exact: weak_continuous. +by move=> ?; exact: cts_fun. +Qed. + +Definition comp_cts {X Y Z : topologicalType} (g : continuousType Y Z) + (f : continuousType X Y) : continuousType X Z := + g \o f. + +Lemma compose_continuous {X Y Z : topologicalType} : + locally_compact [set: X] -> @regular_space X -> + locally_compact [set: Y] -> @regular_space Y -> + continuous (uncurry (fun g f => (@comp_cts X Y Z) g f)). +Proof. +move=> ? ? lY rY; apply: continuous_comp_weak. +set F := _ \o _. +rewrite -[F]uncurryK; apply: continuous_curryf. +pose g := uncurry F \o right_assoc_prod \o (@swap _ _); simpl in *. +have -> : uncurry F = uncurry F \o right_assoc_prod \o left_assoc_prod. + by rewrite funeqE; case; case. +move=> z; apply: continuous_comp; first exact: left_assoc_prod_continuous. +have -> : uncurry F \o right_assoc_prod = + uncurry F \o right_assoc_prod \o (@swap _ _) \o (@swap _ _). + by rewrite funeqE; case; case. +apply: continuous_comp; first exact: swap_continuous. +pose h (fxg : continuousType X Y * X * continuousType Y Z) : Z := + eval (fxg.2, ((eval fxg.1))). +have <- : h = uncurry F \o right_assoc_prod \o (@swap _ _). + by rewrite /h/g/right_assoc_prod/uncurry/swap/F funeqE; case; case. +rewrite /h. +apply: (@continuous2_cvg _ _ _ _ _ _ (snd) (eval \o fst) (curry eval)). +- by apply: continuous_curry_joint_cvg; exact: eval_continuous. +- exact: cvg_snd. +- by apply: cvg_comp; [exact: cvg_fst | exact: eval_continuous]. +Qed. +End composition. + +Lemma openX {X Y : topologicalType} (A : set X) (B : set Y) : + open A -> open B -> open (A `*` B). +Proof. +move=> oA oB; move=> [a b] [/= ? ?]; exists (A, B). + by split; apply: open_nbhs_nbhs. +by case=> ? ? [] /=. +Qed. + +Lemma weak_hausdorff {X : choiceType} {Y : topologicalType} (f : X -> Y) : + injective f -> hausdorff_space Y -> hausdorff_space (weak_topology f). +Proof. +move=> injf hY a b clA; apply: injf; apply: hY => U V Ufa Vfb. +have [] := clA (f @^-1` U) (f @^-1` V); try exact: weak_continuous. +by move=> z [/= ? ?]; exists (f z). +Qed. + +Require Import EqdepFacts. + +Section wedge. +Local Open Scope quotient_scope. +Context {I : choiceType} (X : I -> topologicalType) (p0 : forall i, X i). + +Let wedge_rel' (a b : {i & X i}) := + (a == b) || ((projT2 a == p0 _) && (projT2 b == p0 _)). + +Local Lemma wedge_rel_refl : reflexive wedge_rel'. +Proof. by move=> ?; rewrite /wedge_rel' eqxx. Qed. + +Local Lemma wedge_rel_sym : symmetric wedge_rel'. +Proof. move=> a b. +suff : (is_true (wedge_rel' a b) <-> is_true (wedge_rel' b a)). + case: (wedge_rel' a b) => //; case: (wedge_rel' b a) => // []. + by case=> ->. + by case=> _ ->. +by split; rewrite /wedge_rel'=> /orP [/eqP -> // /[!eqxx] //|] /andP [] /eqP ->; + move=> /eqP ->; rewrite ?eqxx /= orbT. +Qed. + +Local Lemma wedge_rel_trans : transitive wedge_rel'. +Proof. +move=> a b c /orP [/eqP -> //|] + /orP [ /eqP <- // |]. +rewrite /wedge_rel'; case/andP=> /eqP -> /eqP <- /andP [] /eqP _ ->. +by apply/orP; right; rewrite eqxx. +Qed. + +Definition wedge_rel := EquivRel _ wedge_rel_refl wedge_rel_sym wedge_rel_trans. +Global Opaque wedge_rel. + +Definition wedge := {eq_quot wedge_rel}. +Definition wedgei (i : I) : X i -> wedge := \pi_wedge \o (existT X i). + +HB.instance Definition _ := Topological.copy wedge (quotient_topology wedge). +HB.instance Definition _ := Quotient.on wedge. +Global Opaque wedge. + +Lemma wedgei_continuous (i : I) : continuous (@wedgei i). +Proof. by move=> ?; apply: continuous_comp => //; exact: pi_continuous. Qed. + +HB.instance Definition _ (i : I) := @isContinuous.Build _ _ + (@wedgei i) (@wedgei_continuous i). + +Lemma wedgei_nbhs (i : I) (x : X i) : + closed [set p0 i] -> x != p0 _ -> (@wedgei i) @ x = nbhs (wedgei x). +Proof. +move=> clx0 xNx0; rewrite eqEsubset; split => U; first last. + by move=> ?; apply: wedgei_continuous. +rewrite ?nbhsE /=; case => V [oV Vx VU]. +exists ((@wedgei i) @` (V `&` ~`[set p0 i])); first last. + by move=> ? /= [l] [Vl lx] <-; apply: VU. +split; last by exists x => //; split => //=; apply/eqP. +rewrite /open /= /quotient_open /wedgei /=. +suff -> : \pi_wedge @^-1` ((@wedgei i) @` (V `&` ~`[set p0 i])) = + (existT X i) @` (V `&` ~`[set p0 i]). + by apply: existT_open_map; apply: openI => //; exact: closed_openC. +rewrite eqEsubset; split => t /= [l [Vl] lNx0]; last by move=> <-; exists l. +case/eqmodP/orP => [/eqP <- |]; first by exists l. +by move=> /= /andP [/eqP]; move: lNx0 => /[swap] ->. +Qed. + +Lemma wedge_openP (U : set wedge) : + open U <-> (forall i, open (@wedgei i @^-1` U)). +Proof. +split. + move=> oU i; apply: open_comp => // ? _. + by apply: continuous_comp => //; exact: pi_continuous. +move=> oiU. +have : open (\bigcup_i (@wedgei i @` (@wedgei i @^-1` U) )). + apply/sigT_openP => i; move: (oiU i); congr(open _). + rewrite eqEsubset; split => x /=. + by move=> Ux; exists i => //; exists x => //. + case=> j _ /= [] y Uy /eqmodP /orP [/eqP R|]. + have : j = i by move: R; apply: eq_sigT_fst. + move=> E; destruct E; move: Uy; congr(U (_ _)); move: R. + apply: Eqdep_dec.inj_pair2_eq_dec. + by move => p q; case: (pselect (p = q)) => ?; [left | right]. + case/andP=> /eqP/= + /eqP ->; move: Uy => /[swap] ->; congr(_ _). + by apply/eqmodP; apply/orP; right; rewrite ?eqxx. +congr(open _); rewrite eqEsubset; split => /= z. + by case=> i _ /= [x] Ux <-. +move=> Uz; exists (projT1 (repr z)) => //=. +by exists (projT2 (repr z)); rewrite /wedgei /= -?sigT_eta ?reprK. +Qed. + +Lemma wedge_pointE i j : existT _ i (p0 i) = existT _ j (p0 j) %[mod wedge]. +Proof. by apply/eqmodP; apply/orP; right; rewrite ?eqxx. Qed. + +Lemma wedge_point_nbhs i0 : + nbhs (wedgei (p0 i0)) = \bigcap_i ((@wedgei i) @ p0 i). +Proof. +rewrite eqEsubset; split => //= U /=; rewrite ?nbhs_simpl. + case=> V [/= oV Vp] VU j _; apply: wedgei_continuous. + move/filterS: VU; apply => //; first exact: (@nbhs_filter wedge). + apply: open_nbhs_nbhs; split => //; move: Vp; congr( _ _). + by rewrite /wedgei /=; exact: wedge_pointE. +move=> Uj; have V_ : forall i, {V : set (X i) | + [/\ open V, V (p0 i) & V `<=` (@wedgei i) @^-1` U]}. + (move=> j; have Ij : [set: I] j by done); apply: cid. + by move: (Uj _ Ij); rewrite nbhsE /=; case=> B [? ? ?]; exists B. +pose W := \bigcup_i (@wedgei i) @` (projT1 (V_ i)). +exists W; split. +- apply/wedge_openP => i; rewrite /W; have [+ Vpj _] := projT2 (V_ i). + congr(_ _); rewrite eqEsubset; split => z; first by move=> Viz; exists i. + case => j _ /= [] w /= svw /eqmodP /orP [/eqP [E]| ]. + destruct E => R; have <- // := Eqdep_dec.inj_pair2_eq_dec _ _ _ _ _ _ R. + by move=> a b; case: (pselect (a = b)) => ?; [left | right]. + by case/andP=> /eqP /= _ /eqP ->. +- by exists i0 => //=; exists (p0 i0) => //; have [_ + _] := projT2 (V_ i0). +- by move=> ? [j _ [x ? <-]]; have [_ _] := projT2 (V_ j); apply. +Qed. + +Variant wedge_nbhs_spec (z : wedge) : wedge -> set_system wedge -> Type := + | WedgeIsPoint i0 : + wedge_nbhs_spec z (wedgei (p0 i0)) (\bigcap_i ((@wedgei i) @ p0 i)) + | WedgeNotPoint (i : I) (x : X i) of (x != p0 i): + wedge_nbhs_spec z (wedgei x) (@wedgei i @ x). + +Lemma wedge_nbhs_specP (z : wedge) : (forall i, closed [set p0 i]) -> + wedge_nbhs_spec z z (nbhs z). +Proof. +move=> clP; rewrite -[z](@reprK _ wedge); case: (repr z). +move=> i x; case: (pselect (x = p0 i)). + move=> ->; rewrite wedge_point_nbhs => /=; apply: WedgeIsPoint. +by move/eqP => xpi; rewrite /= -wedgei_nbhs //; apply: WedgeNotPoint. +Qed. + +Definition wedge_fun {Z : Type} (f : forall i, X i -> Z) : wedge -> Z := + sigT_fun f \o repr. + +Lemma wedge_fun_continuous {Z : topologicalType} (f : forall i, X i -> Z) : + (forall i, continuous (f i)) -> + (forall i j, f i (p0 i) = f j (p0 j)) -> + continuous (wedge_fun f). +Proof. +move=> cf fE; apply: repr_comp_continuous; first exact: sigT_continuous. +move=> a b /eqP/eqmodP /orP [ /eqP -> // | /andP [/eqP +] /eqP +]. +by rewrite /sigT_fun /= => -> ->; exact/eqP/fE. +Qed. + +Lemma wedge_fun_wedgei {Z : Type} (f : forall i, X i -> Z) i0 (a : X i0): + (forall i j, f i (p0 i) = f j (p0 j)) -> wedge_fun f (wedgei a) = f i0 a. +Proof. +move=> fE. +rewrite /wedge_fun /wedgei /= /sigT_fun /=; case: piP => z /= /eqmodP. +by case/orP => [/eqP <- // | /andP [/eqP /= ->] /eqP ->]; apply: fE. +Qed. + +Lemma wedge_fun_comp {Z1 Z2 : Type} (h : Z1 -> Z2) (f : forall i, X i -> Z1) : + h \o wedge_fun f = wedge_fun (fun i => h \o f i). +Proof. by apply/funext => z; rewrite /= /wedge_fun /= /sigT_fun /=. Qed. + +Lemma wedgeTE : \bigcup_i (@wedgei i) @` setT = [set: wedge]. +Proof. +rewrite -subTset=> z _; rewrite -[z]reprK; exists (projT1 (repr z)) => //. +by exists (projT2 (repr z)); rewrite // reprK /wedgei /= -sigT_eta reprK. +Qed. + +Lemma wedge_compact : finite_set [set: I] -> (forall i, compact [set: X i]) -> + compact [set: wedge]. +Proof. +move=> fsetI cptX. +rewrite -wedgeTE -fsbig_setU //; apply: big_ind. +- exact: compact0. +- by move=> ? ? ? ?; exact: compactU. +move=> i _; apply: continuous_compact; last exact: cptX. +by apply: continuous_subspaceT; exact: wedgei_continuous. +Qed. + +(* The wedge maps into the product + \bigcup_i [x | x j = p0 j when j != i] + + For the box topology, it's an embedding. But more practically, + since the box and product agree when `I` is finite, + we get that the finite wedge embeds into the finite product. + *) +Section wedge_as_product. +Definition wedge_prod_fun : wedge -> prod_topology X := + wedge_fun (fun i x => dfwith (p0) i x). + +Lemma wedge_prod_fun_pointE (i j : I) : dfwith p0 i (p0 i) = dfwith p0 j (p0 j). +Proof. +apply: functional_extensionality_dep => k /=. +case: dfwithP; first case: dfwithP => //. +by move=> i1 iNi1; case: dfwithP => //. +Qed. + +Lemma wedge_prod_fun_inj : injective wedge_prod_fun. +Proof. +have ? := wedge_prod_fun_pointE. +move=> a b; rewrite -[a](@reprK _ wedge) -[b](@reprK _ wedge). +case Ea : (repr a)=> [i x]; case Eb : (repr b) => [j y]. +rewrite /wedge_prod_fun /= ?wedge_fun_wedgei //. +move=> dfij; apply/eqmodP/orP. +case: (pselect (i = j)) => E. + destruct E; left; apply/eqP; congr(_ _). + have : dfwith p0 i x i = dfwith p0 i y i by rewrite dfij. + by rewrite ?dfwithin. +right => /=; apply/andP; split; apply/eqP. + have : dfwith p0 i x i = dfwith p0 j y i by rewrite dfij. + by rewrite dfwithin => ->; rewrite dfwithout // eq_sym; apply/eqP. +have : dfwith p0 i x j = dfwith p0 j y j by rewrite dfij. +by rewrite dfwithin => <-; rewrite dfwithout //; apply/eqP. +Qed. + +Lemma wedge_prod_continuous : continuous wedge_prod_fun. +Proof. +apply: wedge_fun_continuous; last exact: wedge_prod_fun_pointE. +exact: dfwith_continuous. +Qed. + +Lemma wedge_prod_open (x : wedge) (A : set wedge) : + finite_set [set: I] -> + (forall i, closed [set p0 i]) -> + nbhs x A -> + @nbhs _ (subspace (range wedge_prod_fun)) (wedge_prod_fun x) (wedge_prod_fun @` A). +Proof. +move=> fsetI clI; case: wedge_nbhs_specP => //. + move=> i0 bcA. + pose B_ i : set ((subspace (range wedge_prod_fun))) := proj i @^-1` (@wedgei i@^-1` A). + have /finite_fsetP [fI fIE] := fsetI. + have : (\bigcap_(i in [set` fI]) B_ i) `&` range wedge_prod_fun `<=` wedge_prod_fun @` A. + move=> ? [] /[swap] [][] z _ <- /= Bwz; exists z => //. + have Iz : [set` fI] (projT1 (repr z)) by rewrite -fIE //. + have := Bwz _ Iz; congr(A _); rewrite /wedgei /= -[RHS]reprK. + apply/eqmodP/orP; left; rewrite /proj /=. + by rewrite /wedge_prod_fun /= /wedge_fun /sigT_fun /= dfwithin -sigT_eta. + move/filterS; apply. + apply/nbhs_subspace_ex; first by exists (wedgei (p0 i0)). + exists (\bigcap_(i in [set` fI]) B_ i); last by rewrite -setIA setIid. + apply: filter_bigI => i _. + rewrite /B_; apply: proj_continuous. + (have Ii : [set: I] i by done); have /= := bcA _ Ii; congr(nbhs _ _). + rewrite /proj /wedge_prod_fun. + rewrite wedge_fun_wedgei; last exact: wedge_prod_fun_pointE. + by case: dfwithP. +move=> i z zNp0 /= wNz. +rewrite [x in nbhs x _]/wedge_prod_fun /= wedge_fun_wedgei; first last. + exact: wedge_prod_fun_pointE. +have : wedge_prod_fun @` (A `&` (@wedgei i @` ~`[set p0 i])) `<=` wedge_prod_fun @` A. + by move=> ? [] ? [] + /= [w] wpi => /[swap] <- Aw <-; exists (wedgei w). +move/filterS; apply; apply/nbhs_subspace_ex. + exists (wedgei z) => //. + by rewrite /wedge_prod_fun wedge_fun_wedgei //; exact: wedge_prod_fun_pointE. +exists (proj i @^-1` (@wedgei i @^-1` (A `&` (@wedgei i @` ~`[set p0 i])))). + apply/ proj_continuous; rewrite /proj dfwithin preimage_setI; apply: filterI. + exact: wNz. + have /filterS := @preimage_image _ _ (@wedgei i) (~` [set p0 i]). + apply; apply: open_nbhs_nbhs; split; first exact: closed_openC. + by apply/eqP. +rewrite eqEsubset; split => // ?; case => /[swap] [][] r _ <- /=. + case => ? /[swap] /wedge_prod_fun_inj -> [+ [e /[swap]]] => /[swap]. + move=> <- Awe eNpi; rewrite /proj /wedge_prod_fun /=. + rewrite ?wedge_fun_wedgei; last exact: wedge_prod_fun_pointE. + rewrite dfwithin; split => //; first by (split => //; exists e). + exists (wedgei e) => //. + by rewrite wedge_fun_wedgei //; exact: wedge_prod_fun_pointE. +case=> /[swap] [][y] yNpi E Ay. +case : (pselect (i = (projT1 (repr r)))); first last. + move=> R; move: yNpi; apply: absurd. + move: E; rewrite /proj/wedge_prod_fun /wedge_fun /=/sigT_fun /=. + rewrite dfwithout //; last by rewrite eq_sym; apply/eqP. + case/eqmodP/orP; last by case/andP => /= /eqP E. + move=> /eqP => E. + have := Eqdep_dec.inj_pair2_eq_dec _ _ _ _ _ _ E; apply. + by move=> a b; case: (pselect (a = b)) => ?; [left | right]. +move=> riE; split; exists (wedgei y) => //. +- by split; [rewrite E | exists y]. +- congr (wedge_prod_fun _); rewrite E. + rewrite /proj /wedge_prod_fun /wedge_fun /=/sigT_fun. + by rewrite riE dfwithin /wedgei /= -sigT_eta reprK. +- congr(wedge_prod_fun _); rewrite E . + rewrite /proj /wedge_prod_fun /wedge_fun /=/sigT_fun. + by rewrite riE dfwithin /wedgei /= -sigT_eta reprK. +Qed. +End wedge_as_product. + +Lemma wedge_hausdorff : + (forall i, hausdorff_space (X i)) -> + hausdorff_space wedge. +Proof. +move=> /hausdorff_product hf => x y clxy. +apply: wedge_prod_fun_inj; apply: hf => U V /wedge_prod_continuous. +move=> nU /wedge_prod_continuous nV; have := clxy _ _ nU nV. +by case => z [/=] ? ?; exists (wedge_prod_fun z). +Qed. + +Lemma wedge_fun_joint_continuous (T R: topologicalType) + (k : forall (x : I), T -> X x -> R): + (finite_set [set: I]) -> + (forall x, closed [set p0 x]) -> + (forall t x y, k x t (p0 x) = k y t (p0 y)) -> + (forall x, continuous (uncurry (k x))) -> + continuous (uncurry (fun t => wedge_fun (fun x => k x t))). +Proof. +move=> Ifin clp0 kE kcts /= [t u] U. +case : (wedge_nbhs_specP u) => //. + move=> i0; rewrite /= wedge_fun_wedgei // => Ukp0. + have pq_ : forall x, {PQ : set T * set (X x) | + [/\nbhs (p0 x) PQ.2, nbhs t PQ.1 & PQ.1 `*` PQ.2 `<=` uncurry (k x) @^-1` U]}. + move=> x; apply: cid. + move: Ukp0; rewrite (@kE t i0 x). + rewrite -[k x ]uncurryK /curry=> /kcts; case; case=> P Q /= [Pt Qp0 pqU]. + by exists (P,Q) => //. + have UPQ : nbhs (wedgei (p0 i0)) ( + \bigcup_x (@wedgei x) @` (snd (projT1 (pq_ x)))). + rewrite wedge_point_nbhs => r _. + by case: (projT2 (pq_ r)) => /filterS + ? ?; apply => z /= ?; by exists r. + have /finite_fsetP [fI fIE] := Ifin. + have UPt : nbhs t (\bigcap_(r in [set` fI]) (fst (projT1 (pq_ r)))). + by apply: filter_bigI => x ?; case: (projT2 (pq_ x)). + near_simpl => /=; near=> t1 t2 => /=. + have [] // := near UPQ t2 => x _ [w /=] ? <-. + rewrite wedge_fun_wedgei //. + case: (projT2 (pq_ x)) => ? Npt /(_ (t1, w)) => /=; apply; split => //. + by have := near UPt t1; apply; rewrite // -fIE. +move: u => _ x u uNp0 /=; rewrite wedge_fun_wedgei //=. +rewrite -[k x]uncurryK /curry => /kcts; rewrite nbhs_simpl /=. +case; case => /= P Q [Pt Qu] PQU. +have wQu : nbhs (wedgei u) ((@wedgei x) @` Q). + rewrite -wedgei_nbhs //=; move/filterS: Qu; apply. + by move=> z; exists z. +near_simpl; near=> t1 t2 => /=. +have [] // := near wQu t2 => l ? <-; rewrite wedge_fun_wedgei //. +apply: (PQU (t1,l)); split => //. +exact: (near Pt t1). +Unshelve. all: by end_near. Qed. +End wedge. + +HB.mixin Record isBiPointed (X : Type) of Equality X := { + zero : X; + one : X; + zero_one_neq : zero != one; +}. + +#[short(type="biPointedType")] +HB.structure Definition BiPointed := + { X of Choice X & isBiPointed X }. + +#[short(type="bpTopologicalType")] +HB.structure Definition BiPointedTopological := + { X of BiPointed X & Topological X }. + +Section bpwedge. +Context (X Y : bpTopologicalType). +Definition wedge2 b := if b then X else Y. +Definition wedge2p b := if b return wedge2 b then (@one X) else (@zero Y). +Local Notation bpwedge := (@wedge bool wedge2 wedge2p). +Local Notation bpwedgei := (@wedgei bool wedge2 wedge2p). + +Local Lemma wedge_neq : @bpwedgei true zero != @bpwedgei false one . +Proof. +apply/eqP => R; have /eqmodP/orP[/eqP //|/andP[ /= + _]] := R. +by have := (@zero_one_neq X) => /[swap] ->. +Qed. + +Local Lemma bpwedgeE : @bpwedgei true one = @bpwedgei false zero . +Proof. by rewrite/wedgei /= (@wedge_pointE bool _ _ true false). Qed. + +HB.instance Definition _ := @isBiPointed.Build + bpwedge (@bpwedgei true zero) (@bpwedgei false one) wedge_neq. +End bpwedge. + +Notation bpwedge X Y := (@wedge bool (wedge2 X Y) (wedge2p X Y)). +Notation bpwedgei X Y := (@wedgei bool (wedge2 X Y) (wedge2p X Y)). + +HB.mixin Record isPath {i : bpTopologicalType} {T: topologicalType} (x y : T) + (f : i -> T) of isContinuous i T f := { + path_zero : f zero = x; + path_one : f one = y; +}. + +#[short(type="pathType")] +HB.structure Definition Path {i : bpTopologicalType} {T: topologicalType} + (x y : T) := {f of isPath i T x y f & isContinuous i T f}. + +Notation "{ 'path' i 'from' x 'to' y }" := (pathType i x y) (at level 0) : type_scope. + +HB.instance Definition _ {i : bpTopologicalType} + {T : topologicalType} (x y : T) := gen_eqMixin {path i from x to y}. +HB.instance Definition _ {i : bpTopologicalType} + {T : topologicalType} (x y : T) := gen_choiceMixin {path i from x to y}. +HB.instance Definition _ {i : bpTopologicalType} + {T : topologicalType} (x y : T) := + Topological.copy {path i from x to y} + (@weak_topology {path i from x to y} {compact-open, i -> T} id). + +Section path_eq. +Context {T : topologicalType} {i : bpTopologicalType} (x y : T). + +Lemma path_eqP (a b : {path i from x to y}) : + a = b <-> Path.sort a = Path.sort b. +Proof. +split; first by move => ->. +case: a; case: b => /= f [[+ +]] g [[+ +]] fgE. +rewrite fgE => /= a1 [b1 c1] a2 [b2 c2]. +congr (_ _ ). +have -> : a1 = a2 by exact: Prop_irrelevance. +have -> : b1 = b2 by exact: Prop_irrelevance. +have -> : c1 = c2 by exact: Prop_irrelevance. +done. +Qed. +End path_eq. + +Section cst_path. +Context {T : topologicalType} {i : bpTopologicalType} (x: T). + +HB.instance Definition _ := @isPath.Build i T x x (cst x) erefl erefl. +End cst_path. + +Section path_domain_path. +Context {i : bpTopologicalType}. +HB.instance Definition _ := @isPath.Build i i zero one idfun erefl erefl. +End path_domain_path. + +Section path_compose. +Context {T U : topologicalType} (i: bpTopologicalType) (x y : T). +Context (f : continuousType T U) (p : {path i from x to y}). + +Local Lemma fp_zero : (f \o p) zero = f x. +Proof. by rewrite /= ?path_zero. Qed. + +Local Lemma fp_one : (f \o p) one = f y. +Proof. by rewrite /= ?path_one. Qed. + +HB.instance Definition _ := isPath.Build i U (f x) (f y) (f \o p) + fp_zero fp_one. + +End path_compose. + +Section path_reparameterize. +Context {T : topologicalType} (i j: bpTopologicalType) (x y : T). +Context (f : {path i from x to y}) (phi : {path j from (@zero i) to one}). + +Definition reparameterize := f \o phi. + +Local Lemma fphi_zero : reparameterize zero = x. +Proof. by rewrite /reparameterize /= ?path_zero. Qed. + +Local Lemma fphi_one : reparameterize one = y. +Proof. by rewrite /reparameterize /= ?path_one. Qed. + +Local Lemma fphi_cts : continuous reparameterize. +Proof. by move=> ?; apply: continuous_comp; apply: cts_fun. Qed. + +HB.instance Definition _ := isContinuous.Build _ _ reparameterize fphi_cts. + +HB.instance Definition _ := isPath.Build j T x y reparameterize + fphi_zero fphi_one. +End path_reparameterize. + +Section mk_path. +Context {i : bpTopologicalType} {T : topologicalType}. +Context {x y : T} {f : continuousType i T}. +Context (f0 : f zero = x) (f1 : f one = y). + +Definition mk_path : i -> T := let _ := (f0,f1) in f. + +HB.instance Definition _ := Continuous.on mk_path. +HB.instance Definition _ := @isPath.Build i T x y mk_path f0 f1. +End mk_path. + +Definition chain_path {i j : bpTopologicalType} {T : topologicalType} + (f : i -> T) (g : j -> T) : bpwedge i j -> T := + wedge_fun (fun b => if b return wedge2 i j b -> T then f else g). + +Local Lemma chain_path_cts_point {i j : bpTopologicalType} {T : topologicalType} + (f : i -> T) (g : j -> T) : + continuous f -> + continuous g -> + f one = g zero -> + continuous (chain_path f g). +Proof. +move=> cf cg fgE; apply: wedge_fun_continuous => //; first by case. +by case; case; rewrite //=. +Qed. + +Section chain_path. +Context {T : topologicalType} {i j : bpTopologicalType} (x y z: T). +Context (p : {path i from x to y}) (q : {path j from y to z}). + +Local Lemma chain_path_zero : chain_path p q zero = x. +Proof. +rewrite /chain_path /= wedge_fun_wedgei ?path_one ?path_zero //. +by case => //= [][] //=; rewrite ?path_one ?path_zero. +Qed. + +Local Lemma chain_path_one : chain_path p q one = z. +Proof. +rewrite /chain_path /= wedge_fun_wedgei ?path_zero ?path_one //. +by case => //= [][] //=; rewrite ?path_one ?path_zero. +Qed. + +Local Lemma chain_path_cts : continuous (chain_path p q). +Proof. +by apply: wedge_fun_continuous; case; (try now (exact: cts_fun)); + case => //=;rewrite ?path_one ?path_zero //. +Qed. + +HB.instance Definition _ := @isContinuous.Build _ T (chain_path p q) + chain_path_cts. +HB.instance Definition _ := @isPath.Build _ T x z (chain_path p q) + chain_path_zero chain_path_one. +End chain_path. + +(* Such a structure is very much like [a,b] in that + one can split it in half like `[0,1] \/ [0,1] ~ [0,2] ~ [0,1] +*) +HB.mixin Record isSelfSplit (X : Type) of BiPointedTopological X := { + to_wedge : {path X from (@zero (bpwedge X X)) to one}; + to_wedge_bij : bijective to_wedge; + to_wedge_cts : continuous to_wedge; + to_wedge_open : forall A, open A -> open (to_wedge @` A); +}. + +#[short(type="selfSplitType")] +HB.structure Definition SelfSplit := { + X of BiPointedTopological X & isSelfSplit X +}. + +Section path_concat. +Context {T : topologicalType} {i : selfSplitType} (x y z: T). +Context (p : {path i from x to y}) (q : {path i from y to z}). + +Definition path_concat : {path i from x to z} := + reparameterize (chain_path p q) (to_wedge). + +End path_concat. + +Section self_wedge_path. +Context {i : selfSplitType}. + +Definition from_wedge_sub : bpwedge i i -> i := + ((bijection_of_bijective (@to_wedge_bij i))^-1)%FUN. + +Local Lemma from_wedge_zero : from_wedge_sub zero = zero. +Proof. +move/bij_inj : (@to_wedge_bij i); apply. +rewrite /from_wedge_sub /=. +have /= -> := (@invK _ _ _ _ (bijection_of_bijective (@to_wedge_bij i))). + by rewrite path_zero. +by apply/mem_set. +Qed. + +Local Lemma from_wedge_one : from_wedge_sub one = one. +Proof. +move/bij_inj : (@to_wedge_bij i); apply. +rewrite /from_wedge_sub /=. +have /= -> := (@invK _ _ _ _ (bijection_of_bijective (@to_wedge_bij i))). + by rewrite path_one. +exact/mem_set. +Qed. + +Local Lemma from_wedge_cts : continuous from_wedge_sub. +Proof. +apply/continuousP => A /to_wedge_open. +congr(_ _); rewrite eqEsubset; split => //. + move=> ? /= [z Az <-]; rewrite /from_wedge_sub. + by rewrite funK => //; apply/mem_set. +move=> z /=; exists (from_wedge_sub z) => //. +rewrite /from_wedge_sub. +have /= -> // := (@invK _ _ _ _ (bijection_of_bijective (@to_wedge_bij i))). +exact/mem_set. +Qed. + +HB.instance Definition _ := isContinuous.Build _ _ from_wedge_sub from_wedge_cts. + +HB.instance Definition _ := isPath.Build (bpwedge i i) i zero one from_wedge_sub + from_wedge_zero from_wedge_one. +End self_wedge_path. + +HB.lock Definition from_wedge {i : selfSplitType} : {path (bpwedge i i) from (@zero i) to one} := + [the pathType _ _ _ of from_wedge_sub]. +Canonical locked_from_wedge := Unlockable from_wedge.unlock. + +Lemma from_wedgeK {i : selfSplitType} : cancel from_wedge (@to_wedge i). +Proof. +move=> z; rewrite unlock /= /from_wedge_sub. +have /= -> // := (@invK _ _ _ _ (bijection_of_bijective (@to_wedge_bij i))). +exact/mem_set. +Qed. + +Lemma to_wedgeK {i : selfSplitType}: cancel (@to_wedge i) from_wedge. +Proof. +move=> z; rewrite unlock /= /from_wedge_sub funK //. +exact/mem_set. +Qed. + +Section path_join_assoc. +Context (i : selfSplitType). + +Let i_i := @bpwedge i i. +Local Open Scope quotient_scope. +Notation "f '<>' g" := (@path_concat _ i _ _ _ f g). + +Lemma conact_cstr {T : topologicalType} (x y : T) (f : {path i from x to y}) : + exists (p : {path i from zero to one}), f \o p = (f <> cst y). +Proof. +exists (idfun <> cst one). +rewrite compA wedge_fun_comp /path_concat. +congr( _ \o to_wedge); congr(wedge_fun _). +apply: functional_extensionality_dep; case => //=. +by apply/funext => ? /=; rewrite /cst path_one. +Qed. + +Lemma conact_cstl {T : topologicalType} (x y : T) (f : {path i from x to y}) : + exists (p : {path i from zero to one}), f \o p = (cst x <> f). +Proof. +exists (cst zero <> idfun). +rewrite compA wedge_fun_comp /path_concat. +congr( _ \o to_wedge); congr(wedge_fun _). +apply: functional_extensionality_dep; case => //=. +by apply/funext => ? /=; rewrite /cst path_zero. +Qed. + +Let ii_i := (bpwedge i_i i). +Let i_ii := (bpwedge i i_i). +Check @wedgei. +Let wedgel_i_i : {path i from zero to _} := + @mk_path _ _ _ _ + [the continuousType _ _ of @wedgei _ (wedge2 i i) _ true] + erefl (bpwedgeE _ _). +Let wedger_i_i : {path i from _ to one} := + @mk_path _ _ _ _ + [the continuousType _ _ of @wedgei _ (wedge2 i i) _ false] + erefl erefl. + +Let splitl_left : {path i_i from (@zero ii_i) to _} := + (@mk_path _ _ _ _ + [the continuousType _ _ of @bpwedgei i_i i true] + erefl (@bpwedgeE _ _)). +Let splitl_right : {path i from _ to (@one ii_i)} := + @mk_path _ _ _ _ + [the continuousType _ _ of @bpwedgei i_i i false] + erefl erefl. +Let splitl : {path i from (@zero ii_i) to one} := + (reparameterize splitl_left to_wedge) <> splitl_right. + +Let splitr_right : {path i_i from _ to (@one i_ii)} := + @mk_path _ _ _ _ + [the continuousType _ _ of @bpwedgei i i_i false] + erefl erefl. +Let splitr_left : {path i from (@zero i_ii) to _} := + @mk_path _ _ _ _ + [the continuousType _ _ of @bpwedgei i i_i true] + erefl (bpwedgeE _ _). + +Let unsplitr : {path i_ii from zero to one} := + reparameterize + from_wedge + (chain_path wedgel_i_i (reparameterize wedger_i_i from_wedge)). + +Let associ : continuousType ii_i i_ii := + chain_path + (chain_path + (splitr_left) + (splitr_right \o wedgel_i_i)) + (splitr_right \o wedger_i_i). + +Section assoc. +Context {T : topologicalType} {p1 p2 p3 p4: T}. +Context (f : {path i from p1 to p2}). +Context (g : {path i from p2 to p3}). +Context (h : {path i from p3 to p4}). + +Local Lemma assoc0 : associ zero = zero. +Proof. +rewrite /associ /= /chain_path /= ?wedge_fun_wedgei //. + by case; case; rewrite //= ?bpwedgeE. +case; case; rewrite //= ?bpwedgeE //= ?wedge_fun_wedgei /= ?bpwedgeE //=. + by case; case; rewrite //= ?bpwedgeE. +by case; case; rewrite //= ?bpwedgeE. +Qed. + +Local Lemma assoc1 : associ one = one. +Proof. +rewrite /associ /= /chain_path /= ?wedge_fun_wedgei //. +case; case; rewrite //= ?bpwedgeE //= ?wedge_fun_wedgei /= ?bpwedgeE //=. + by case; case; rewrite //= ?bpwedgeE. +by case; case; rewrite //= ?bpwedgeE. +Qed. + +(* not really non-forgetful, but we can make it local anyway so it's fine*) +#[local, non_forgetful_inheritance] +HB.instance Definition _ := isPath.Build ii_i _ _ _ associ + assoc0 assoc1. + +Local Lemma concat_assocl : + (f <> (g <> h)) \o (unsplitr \o associ \o splitl) = + ((f <> g) <> h). +Proof. +Ltac wedge_simpl := repeat ( + rewrite ?(wedge_fun_wedgei, path_one, path_zero, bpwedgeE, reprK) //=; + (try (case;case))). +apply/funext => z; rewrite /= /reparameterize /=/associ/chain_path. +rewrite -[to_wedge z](@reprK _ i_i). +case E : (repr (to_wedge z)) => [b x] /=. +wedge_simpl; rewrite /= ?from_wedgeK ?to_wedgeK. +case: b x E => x E /=; wedge_simpl; first last. + by rewrite from_wedgeK; wedge_simpl. +rewrite -[to_wedge x](@reprK _ i_i); case: (repr (to_wedge x)) => [b2 y] /=. +case: b2 y => y; wedge_simpl; rewrite from_wedgeK. +wedge_simpl. +Qed. + +Lemma concat_assoc: + exists p : {path i from zero to one}, + (f <> (g <> h)) \o p = ((f <> g) <> h). +Proof. +exists (reparameterize unsplitr (reparameterize associ splitl)). +by rewrite concat_assocl. +Qed. + +End assoc. +End path_join_assoc. + +HB.mixin Record isPathDomain {d} (i : Type) of + OrderTopological d i & SelfSplit i := { + (* this makes the path_between relation symmetric*) + flip : {path i from (@one i) to (@zero i)}; + flipK : involutive flip; + (* this lets us curry for paths between paths*) + domain_locally_compact : locally_compact [set: i]; + (* this gives us homotopies between {path i from zero to one} and `idfun`*) + zero_bot : forall (y:i), (@Order.le d i zero y); + one_top : forall (y:i), (@Order.le d i y one); +}. + +#[short(type="pathDomainType")] +HB.structure Definition PathDomain {d} := + { i of @OrderTopological d i & SelfSplit i & isPathDomain d i}. + +Lemma path_domain_set1 {d} {i : pathDomainType d} (x : i) : + closed [set x]. +Proof. +exact/accessible_closed_set1/hausdorff_accessible/order_hausdorff. +Qed. + +#[global] Hint Resolve path_domain_set1 : core. + +Section path_flip. +Context {d} {T : topologicalType} (i : pathDomainType d) (x y : T). +Context (f : {path i from x to y}). + +Definition path_flip := f \o flip. + +Local Lemma fflip_zero : path_flip zero = y. +Proof. by rewrite /path_flip /= path_zero path_one. Qed. + +Local Lemma fflip_one : path_flip one = x. +Proof. by rewrite /path_flip /= path_one path_zero. Qed. + +Local Lemma fflip_cts : continuous path_flip. +Proof. by move=> ?; apply: continuous_comp; apply: cts_fun. Qed. + +HB.instance Definition _ := isContinuous.Build _ _ path_flip fflip_cts. + +HB.instance Definition _ := isPath.Build i T y x path_flip + fflip_zero fflip_one. +End path_flip. + + +Lemma continuous_uncurry_min {d} {T : orderTopologicalType d} : + continuous (uncurry (@Order.min d T)). +Proof. +by have := (@min_continuous d T); congr(continuous _); rewrite funeq2E => ? []. +Qed. + +Lemma continuous_uncurry_max {d} {T : orderTopologicalType d} : + continuous (uncurry (@Order.max d T)). +Proof. +by have := (@max_continuous d T); congr(continuous _); rewrite funeq2E => ? []. +Qed. + +Section path_connected. +Context {d} {i : pathDomainType d}. +Local Open Scope quotient_scope. +Notation "f '<>' g" := (path_concat f g). + +Section path_component. +Context {T : topologicalType}. + +Let path_between_sub (a b : T) := `[<$| {path i from a to b}|>]. + +Lemma path_between_refl : reflexive path_between_sub. +Proof. by move=> x; apply/asboolP; apply: squash; exact: (cst x). Qed. + +Lemma path_between_sym : symmetric path_between_sub. +Proof. +move=> a b. +suff : (is_true (path_between_sub a b) <-> is_true (path_between_sub b a)). + case: (path_between_sub a b) => //; case: (path_between_sub b a) => // []. + by case=> ->. + by case=> _ ->. +by split => /asboolP /unsquash f; exact/asboolP/squash/(path_flip f). +Qed. + +Lemma path_between_trans : transitive path_between_sub. +Proof. +move=> x y z; case/asboolP=> f /asboolP [g]. +apply/asboolP/squash; exact: (f <> g). +Qed. + +Definition path_between := EquivRel _ + path_between_refl path_between_sym path_between_trans. + +Definition path_components := {eq_quot path_between}. + +Definition path_component_of (x : T) : path_components := pi _ x. + +HB.instance Definition _ (x y : T) := EqQuotient.on path_components. +End path_component. + +Arguments path_components : clear implicits. + +Lemma path_uncurry_cts {T : topologicalType} (x y : T) + (a b : {path i from x to y}) (f : {path i from a to b}) : + continuous (uncurry [eta f]). +Proof. +apply: continuous_uncurry. +- exact: domain_locally_compact. +- exact: order_hausdorff. +- suff : continuous (@Path.sort i _ x y \o f : i -> {compact-open, i -> T}). + by exact. + move=> ?; apply: continuous_comp; first exact: cts_fun. + exact: weak_continuous. +- by move=> t; exact: cts_fun. +Qed. + +Lemma path_between_pathP {T : topologicalType} (x y : T) (a b : {path i from x to y}) : + path_between a b <-> exists (f : i * i -> T), + [/\continuous f, + forall t, curry f t zero = x, + forall t, curry f t one = y, + curry f zero = a & + curry f one = b]. +Proof. +split. + case/asboolP => f; exists (uncurry [eta f]); split. + - exact: path_uncurry_cts. + - by move=> t; exact: path_zero. + - by move=> t; exact: path_one. + - by apply/funext => ?; rewrite /curry /= path_zero. + - by apply/funext => ?; rewrite /curry /= path_one. +case=> f [cf ft0 ft1 f0 f1]; apply/asboolP. +have ftcts t : Continuous.axioms_ (curry f t). + by have [_ ] := continuous_curry cf; exact. +have ftpath t : Path.axioms_ x y (curry f t). + by exists (ftcts t); split => //. +apply: squash; exists (fun t => Path.Pack (ftpath t)). +have cpf : Continuous.axioms_ (fun t => Path.Pack (ftpath t)). + split; split; apply: continuous_comp_weak; rewrite /comp //=. + exact: continuous_curryf. +by exists cpf; split; apply/path_eqP => //=. +Qed. + +Section i_path. + +Local Lemma reparam_path_lt (p q: {path i from (@zero i) to one}) : + (forall j, p j <= q j)%O -> + path_between p q. +Proof. +move=> svj; apply/path_between_pathP. +pose f := ((q \o snd) \min (fst \max (p \o snd))). +exists f; split; rewrite /f/curry /=. +- apply: min_fun_continuous => //. + move=>? ; apply:continuous_comp; first by move=> ?; exact: cvg_snd. + exact: cts_fun. + apply: max_fun_continuous => //; first by move=> ?; exact: cvg_fst. + move=>? ; apply:continuous_comp; first by move=> ?; exact: cvg_snd. + exact: cts_fun. +- by move=> t; rewrite min_l ?path_zero ?zero_bot. +- by move=> t; rewrite min_r ?path_one ?one_top ?max_r ?one_top. +- by apply/funext=> u; rewrite max_r ?zero_bot // min_r. +- by apply/funext=> u; rewrite max_l ?one_top // min_l // one_top. +Qed. + +Local Lemma reparam_path_id (p: {path i from (@zero i) to one}) : + path_between p idfun. +Proof. +pose q := idfun \min p. +have cq : Continuous.axioms_ q. + split; split; apply: min_fun_continuous; first by move=> ?; exact: cvg_id. + exact: cts_fun. +have q_path : Path.axioms_ zero one q. + by exists cq; split; rewrite /q /= ?path_zero ?path_one ?min_l ?path_zero. +apply: (@path_between_trans _ (Path.Pack q_path)). + rewrite path_between_sym; apply: reparam_path_lt; move=> j. + by rewrite /= /q /= ge_min lexx orbT. +by apply: reparam_path_lt; move=> j; rewrite /q /= ge_min lexx. +Qed. + +Lemma reparam_path (p q: {path i from (@zero i) to one}) : + path_between p q. +Proof. +apply: (@path_between_trans {path i from zero to one} idfun). + exact: reparam_path_id. +by rewrite path_between_sym; exact: reparam_path_id. +Qed. + +Lemma reparam_path_between {T : topologicalType} (x y : T) + (phi: {path i from (@zero i) to one}) (f : {path i from x to y}) : + path_between f (reparameterize f phi). +Proof. +apply/path_between_pathP. +have /path_between_pathP [h [hcts ht0 ht1 h0 h1]] := reparam_path idfun phi. +exists (f \o h); split. +- by move=> ?; apply: continuous_comp; [exact: hcts | exact: cts_fun]. +- by move=> t; move: (ht0 t); rewrite /curry /= => ->; rewrite path_zero. +- by move=> t; move: (ht1 t); rewrite /curry /= => ->; rewrite path_one. +- by apply/funext => u; move/funeqP/(_ u): h0; rewrite /curry /= => ->. +- by apply/funext => u; move/funeqP/(_ u): h1; rewrite /curry /= => ->. +Qed. + +End i_path. + +Section path_between_functor. +Context {T U: topologicalType}. + +Lemma path_bewteen_fun {f : T -> U} (p q : T): + continuous f -> path_between p q -> path_between (f p) (f q). +Proof. +move=> cf /asboolP/unsquash => g; apply/asboolP/squash. +have fg0 : (f \o g) zero = f p by rewrite /= path_zero. +have fg1 : (f \o g) one = f q by rewrite /= path_one. +apply: @mk_path _ _ _ _ (mkcts cf \o g) fg0 fg1. +Qed. + +End path_between_functor. + +Section path_between_wedge. +Local Import ArrowAsCompactOpen. +Context {T: topologicalType} (x y z : T). + +Lemma path_concat_joint_continuous + (f g : i -> i -> T): + (forall t, f t one = g t zero) -> + (continuous (uncurry f)) -> + (continuous (uncurry g)) -> + continuous (uncurry (fun t => chain_path (f t) (g t) \o to_wedge)). +Proof. +move=> hkE cf cg. +set k := fun _ => _. +pose h := uncurry (fun t => chain_path (f t) (g t)). +rewrite (_ : uncurry k = h \o (fun xy => (xy.1, to_wedge (xy.2)))); first last. + by rewrite /h /k funeqE; case. +move=> r; apply: continuous_comp. + apply: @continuous2_cvg. + - by move=> ? /filterS; apply => ? //=; rewrite -surjective_pairing. + - exact: cvg_fst. + - apply: cvg_comp; first exact: cvg_snd. + - exact: cts_fun. +apply: wedge_fun_joint_continuous => //. +- exact: finite_finset. +- move => ?; apply/ accessible_closed_set1/ hausdorff_accessible. + by rewrite /wedge2 /= if_same; apply: order_hausdorff. +- by move=> ? [][]. +- by case. +Qed. + +Lemma path_between_wedge (a a' : {path i from x to y}) + (b b' : {path i from y to z}) : + path_between a a' -> path_between b b' -> + path_between (a <> b) (a' <> b'). +Proof. +have ? := (@domain_locally_compact _ i). +have ? : hausdorff_space i by exact: order_hausdorff. +case/asboolP => h /asboolP [] k; apply/path_between_pathP. +exists (uncurry (fun t => (h t) <> (k t))); split. +- apply: path_concat_joint_continuous. +- by move=> ?; rewrite ?path_one ?path_zero. +- apply: continuous_uncurry => //. + move=> ?; apply: continuous_comp; first exact: cts_fun. + exact: weak_continuous. + by move=> ?; apply: cts_fun. +- apply: continuous_uncurry => //. + move=> ?; apply: continuous_comp; first exact: cts_fun. + exact: weak_continuous. + by move=> ?; apply: cts_fun. +- by move => t; rewrite uncurryK path_zero. +- by move => t; rewrite uncurryK path_one. +- by rewrite uncurryK ?path_zero. +- by rewrite uncurryK ?path_one. +Qed. +End path_between_wedge. + +Section fundamental_groupoid. +Context {T: topologicalType}. + +(* arrows in the category of endpoint-preserving homotopies *) +Definition fundamental_groupoid (x y : T) := + path_components {path i from x to y}. + +HB.instance Definition _ (x y : T) := EqQuotient.on (fundamental_groupoid x y). + +Local Notation fdg := (fundamental_groupoid). + +Definition fdg_op {x y z : T} (l : fdg x y) (r : fdg y z) : fdg x z := + \pi_(fdg x z) (repr l <> repr r). + +Notation "l '<.>' r" := (fdg_op l r) (at level 70). + +Definition fdg_zero (x : T) : fdg x x := \pi_(fdg x x) (cst x). + +Lemma fdg_op_zeror (x y : T) (a : fdg x y) : (a <.> fdg_zero y) = a. +Proof. +rewrite -[a]reprK /fdg_zero; apply/eqmodP; rewrite ?reprK /=. +apply: (@path_between_trans {path i from x to y} (repr a <> cst y)). + apply: path_between_wedge => //. + rewrite /fdg_zero /=; case: piP=> r /eqmodP; rewrite path_between_sym; apply. +rewrite path_between_sym. +have [p /= E] := conact_cstr (repr a). +have /= := (reparam_path_between p (repr a)). +congr (path_between _ _); apply/path_eqP => //=. +Qed. + +Lemma fdg_op_zerol (x y : T) (a : fdg x y) : (fdg_zero x <.> a) = a. +Proof. +rewrite -[a]reprK; apply/eqmodP; rewrite ?reprK /=. +apply: (@path_between_trans {path i from x to y} (cst x <> repr a)). + apply: path_between_wedge => //. + rewrite /fdg_zero /=; case: piP=> r /eqmodP; rewrite path_between_sym; apply. +rewrite path_between_sym; have [p /= E] := conact_cstl (repr a). +have /= := (reparam_path_between p (repr a)). +congr (path_between _ _); apply/path_eqP => //=. +Qed. + +Lemma fdg_op_assoc (p1 p2 p3 p4 : T) (f : fdg p1 p2) + (g : fdg p2 p3) (h : fdg p3 p4) : + (f <.> (g <.> h)) = ((f <.> g) <.> h). +Proof. +rewrite -[f]reprK -[g]reprK -[h]reprK /=; apply/eqmodP. +rewrite /fdg_op ?reprK /=. +apply: (@path_between_trans _ ((repr f) <> ((repr g) <> (repr h)))). + apply: path_between_wedge => //. + by case: piP => r /eqmodP; rewrite /= path_between_sym. +apply: (@path_between_trans _ (((repr f) <> (repr g)) <> (repr h))). + have [] := @concat_assoc _ _ _ _ _ _ (repr f) (repr g) (repr h); + rewrite ?path_one ?path_zero //. + move=> p E. + have /= := (reparam_path_between p (repr f <> (repr g <> repr h))). + congr (path_between _ _); apply/path_eqP => //=. +apply: path_between_wedge => //. +by case: piP => r /eqmodP; rewrite /= path_between_sym. +Qed. + +Definition fdg_op_inv (x y : T) (f : fdg x y) := + \pi_(fdg y x) (path_flip (repr f)). + +Lemma fdg_op_invr (x y : T) (f : fdg x y) : + fdg_zero x = (f <.> fdg_op_inv f). +Proof. +Ltac wedge_simpl := repeat ( + rewrite ?(wedge_fun_wedgei, path_one, path_zero, bpwedgeE) //=; + (try (case;case))). +rewrite -[f]reprK; apply/eqmodP; rewrite ?reprK. +apply: (@path_between_trans _ (repr f <> (path_flip (repr f)))); first last. + apply: path_between_wedge => //. + by case: piP => r /eqmodP; rewrite /= path_between_sym. +apply/path_between_pathP. +pose h t := chain_path + ((repr f) \o (Order.min t)) + ((repr f) \o (Order.min t) \o flip) \o to_wedge. +have ? := @order_hausdorff _ i. +have ? := @domain_locally_compact _ i. +have ? : forall b : bool, closed [set wedge2p i i b]. + by case; exact: path_domain_set1. +exists (uncurry h); split => //; first last. +- apply/funext => u; rewrite /curry/uncurry/h /=. + by case: (wedge_nbhs_specP (to_wedge u)) => //; case; rewrite /chain_path /path_flip; + [ | | move=> ? ? | move=> ? ?]; wedge_simpl; rewrite ?min_r ?one_top; wedge_simpl. +- apply/funext => u; rewrite /curry/uncurry/h /=. + by case: (wedge_nbhs_specP (to_wedge u)) => //; case; rewrite /chain_path /path_flip; + [ | | move=> ? ? | move=> ? ?]; wedge_simpl; rewrite ?min_l ?zero_bot; wedge_simpl. +- move=> t; rewrite /curry/uncurry/h /= /chain_path. + by wedge_simpl; rewrite min_r ?zero_bot ?path_zero. +- move=> t; rewrite /curry/uncurry/h /= /chain_path. + by wedge_simpl; rewrite min_r ?zero_bot ?path_zero. +apply: path_concat_joint_continuous. +- by move=> t; rewrite /= path_zero. +- rewrite ( _ : uncurry _ = (repr f \o (fun tu => @Order.min _ i tu.1 tu.2))) //. + move=> ?; apply: continuous_comp;[exact: min_continuous | exact: cts_fun]. + by apply/funext; case=> ? ?. +- rewrite ( _ : uncurry _ = + (repr f \o (fun tu => @Order.min _ i tu.1 tu.2) \o (fun xy => (xy.1, flip xy.2)))) //; first last. + by apply/funext; case=> ? ?. +move=> ?; apply: continuous_comp. + apply: cvg_pair; first exact: cvg_fst. + apply: cvg_comp; first exact: cvg_snd. + exact: cts_fun. +move=> ?; apply: continuous_comp; first exact: min_continuous. +exact: cts_fun. +Qed. + +Lemma fdg_op_invl (x y : T) (f : fdg x y) : + fdg_zero y = (fdg_op_inv f <.> f). +Proof. +rewrite -[f]reprK; apply/eqmodP; rewrite ?reprK. +apply: (@path_between_trans _ ((path_flip (repr f)) <> repr f)); first last. + apply: path_between_wedge => //. + by case: piP => r /eqmodP; rewrite /= path_between_sym. +rewrite path_between_sym; apply/path_between_pathP. +pose h t := chain_path + ((repr f) \o (Order.max t) \o flip) + ((repr f) \o (Order.max t)) \o to_wedge. +have ? := @order_hausdorff _ i. +have ? := @domain_locally_compact _ i. +have ? : forall b : bool, closed [set wedge2p i i b]. + by case; exact: path_domain_set1. +exists (uncurry h); split => //; first last. +- apply/funext => u; rewrite /curry/uncurry/h /=. + by case: (wedge_nbhs_specP (to_wedge u)) => //; case; rewrite /chain_path /path_flip; + [ | | move=> ? ? | move=> ? ?]; wedge_simpl; rewrite ?max_l ?one_top; wedge_simpl. +- apply/funext => u; rewrite /curry/uncurry/h /=. + by case: (wedge_nbhs_specP (to_wedge u)) => //; case; rewrite /chain_path /path_flip; + [ | | move=> ? ? | move=> ? ?]; wedge_simpl; rewrite ?max_r ?zero_bot; wedge_simpl. +- move=> t; rewrite /curry/uncurry/h /= /chain_path. + by wedge_simpl; rewrite max_r ?one_top ?path_one. +- move=> t; rewrite /curry/uncurry/h /= /chain_path. + by wedge_simpl; rewrite max_r ?one_top ?path_one. +apply: path_concat_joint_continuous. +- by move=> t; rewrite /= path_one. +- rewrite ( _ : uncurry _ = + (repr f \o (fun tu => @Order.max _ i tu.1 tu.2) \o (fun xy => (xy.1, flip xy.2)))) //; first last. + by apply/funext; case=> ? ?. + move=> ?; apply: continuous_comp. + apply: cvg_pair; first exact: cvg_fst. + apply: cvg_comp; first exact: cvg_snd. + exact: cts_fun. + move=> ?; apply: continuous_comp; first exact: max_continuous. + exact: cts_fun. +- rewrite ( _ : uncurry _ = (repr f \o (fun tu => @Order.max _ i tu.1 tu.2))) //. + move=> ?; apply: continuous_comp;[exact: max_continuous | exact: cts_fun]. + by apply/funext; case=> ? ?. +Qed. + +End fundamental_groupoid. + +Section fundamental_groupoid_functor. + +Implicit Types T U V: topologicalType. + +Notation "l '<.>' r" := (fdg_op l r) (at level 70). + + +Local Notation fdg := (fundamental_groupoid). + +Definition fdg_lift {T U} (f : continuousType T U) (x y : T) (a : fdg x y) : + fdg (f x) (f y) := + \pi_(fdg (f x) (f y)) (comp_cts f (repr a) : {path i from f x to f y}). + +Lemma fdg_lift_opE {T U} (f : continuousType T U) (x y z : T) + (a : fdg x y) (b : fdg y z) : + fdg_lift f a <.> fdg_lift f b = fdg_lift f (a <.> b). +Proof. +apply/eqmodP. +case: piP => p1 /eqmodP; case: piP => p2 /eqmodP; case: piP => p3/eqmodP. +move=> p3ab p2b p1a; apply: equiv_trans. + apply: path_between_wedge. + rewrite equiv_sym; exact: p1a. + rewrite equiv_sym; exact: p2b. +have -> : comp_cts f (repr a) <> comp_cts f (repr b) = + (comp_cts f (repr a <> repr b)). + apply/path_eqP; rewrite /= /comp_cts /path_concat /reparameterize /chain_path. + rewrite /chain_path [f \o (_ \o to_wedge)]compA. + rewrite wedge_fun_comp /= /chain_path /=. + congr (wedge_fun _ \o to_wedge). + apply: functional_extensionality_dep; case => //. +apply/path_between_pathP. +case/path_between_pathP: p3ab => h [ch ht0 ht1 h0 h1]. +exists (f \o h); split. +- by move=> ?; apply: continuous_comp; [exact: ch | exact: cts_fun]. +- by move=> t; move: (ht0 t); rewrite /curry/= => <-. +- by move=> t; move: (ht1 t); rewrite /curry/= => <-. +- apply/funext => t; move: h0; rewrite funeqE. + by move/(_ t); rewrite /curry/= => <-. +- apply/funext => t; move: h1; rewrite funeqE. + by move/(_ t); rewrite /curry/= => <-. +Qed. + +Lemma fdg_lift_zero {T U} + (f : continuousType T U) (x : T) : + fdg_lift f (fdg_zero x) = fdg_zero (f x). +Proof. +apply/eqmodP; rewrite equiv_sym. +case: piP=> p1/eqmodP/path_between_pathP [h [ch ht0 ht1 h0 h1]]. +apply/path_between_pathP; exists (f \o h); split. +- by move=> ?; apply: continuous_comp; [exact: ch | exact: cts_fun]. +- by move=> t; move: (ht0 t); rewrite /curry/= => <-. +- by move=> t; move: (ht1 t); rewrite /curry/= => <-. +- apply/funext => t. move: h0; rewrite funeqE. + by move/(_ t); rewrite /cst /= /cst /curry /= => ->. +- apply/funext => t; move: h1; rewrite funeqE. + by move/(_ t); rewrite /curry/= => <-. +Qed. + +Lemma fdg_lift_comp {T U V} + (f : continuousType T U) (g : continuousType U V) (x y : T) : + @fdg_lift _ _ (g \o f) x y = + (@fdg_lift _ _ g (f x) (f y)) \o (@fdg_lift _ _ f x y). +Proof. +apply/funext=> a /=; apply/eqmodP. +case: piP => p1 /eqmodP. +rewrite /comp_cts -[(g \o f) \o _]compA. +case/path_between_pathP=> h [ch ht0 ht1 h0 h1]. +apply/path_between_pathP; exists (g \o h); split. +- by move=> ?; apply: continuous_comp; [exact: ch | exact: cts_fun]. +- by move=> t; move: (ht0 t); rewrite /curry/= => <-. +- by move=> t; move: (ht1 t); rewrite /curry/= => <-. +- apply/funext => t; move: h0; rewrite funeqE. + by move/(_ t); rewrite /curry/= => <-. +- apply/funext => t; move: h1; rewrite funeqE. + by move/(_ t); rewrite /curry/= => <-. +Qed. + +Lemma fdg_lift_id {T} (x y : T) (a : fdg x y) : + fdg_lift (idfun) a = a. +Proof. +rewrite -[RHS]reprK /= /fdg_lift; congr(_ _). +by apply/path_eqP; apply/funext. +Qed. + +End fundamental_groupoid_functor. + +End path_connected. +(* +HB.instance Definition _ {X : topologicalType} (A : set X) := + Topological.copy (set_type A) (weak_topology set_val). + +HB.instance Definition _ {X : topologicalType} (A : set X) := + isContinuous.Build A X set_val (@weak_continuous A X set_val). + +Section subspacesI. +Context {X : topologicalType} (A B : set X). +Lemma setIR_mem x : (x \in A `&` B) -> x \in B. +Proof. by case/set_mem => _ /mem_set. Qed. + +Lemma setIL_mem x : (x \in A `&` B) -> x \in A. +Proof. by case/set_mem => /mem_set. Qed. + +Definition set_valIR (x : A `&` B) : B := + exist _ (projT1 x) (setIR_mem (projT2 x)). + +Definition set_valIL (x : A `&` B) : A := + exist _ (projT1 x) (setIL_mem (projT2 x)). + +Lemma set_valIR_continuous : continuous set_valIR. +Proof. +apply: continuous_comp_weak; rewrite /comp /= /set_valIR /= set_valE /=. +exact: weak_continuous. +Qed. + +HB.instance Definition _ := isContinuous.Build _ _ set_valIR set_valIR_continuous. + +Lemma set_valIL_continuous : continuous set_valIL. +Proof. +apply: continuous_comp_weak; rewrite /comp /= /set_valIR /= set_valE /=. +exact: weak_continuous. +Qed. + +HB.instance Definition _ := isContinuous.Build _ _ set_valIL set_valIL_continuous. +End subspacesI. + + +Section path_cutting. +Context {d} {i : pathDomainType d}. +Local Open Scope quotient_scope. + +Notation "f '<>' g" := (@path_concat _ i _ _ _ f g). + +Context {T : topologicalType} (x y z : T). +Context (p : {path i from x to z}). + +Lemma path_cut t : p t = y -> exists + (l : {path i from x to y}) (r : {path i from y to z}) (phi : {path i from (zero : i) to one}), + l <> r = reparameterize p phi. +Proof. +pose phi := chain_path (Order.min t) (Order.max t) \o to_wedge. +have : phi zero = zero. + rewrite /phi /chain_path /= ?path_zero ?wedge_fun_wedgei ?min_r ?zero_bot //. + case; case; rewrite //= ?path_zero /= ?min_l ?max_l ?one_top ?zero_bot //. +have : phi one = one. + rewrite /phi /chain_path /= ?path_one ?wedge_fun_wedgei ?max_r ?one_top //. + case; case; rewrite //= ?path_zero /= ?min_l ?max_l ?one_top ?zero_bot //. +have : continuous phi. + move=> ?; apply: continuous_comp; first exact: cts_fun. + apply: chain_path_cts_point. + move=> w; apply: continuous2_cvg => //. + + + Search Order.min (continuous _). + + +let l := + +Context {T : topologicalType} (L R : set T). +Hypothesis oL : open L. +Hypothesis oR : open R. + +Let lT := fdg_lift (set_val : L -> T). +Let rT := fdg_lift (set_val : R -> T). + +Lemma split_path (x y : L) (p : {path i from x to y}) : + + +Lemma van_kampen_simpleI : + interior L `|` interior R = [set: T] -> + (forall (cmp : @path_components _ i L), + exists (a : L), A (projT1 a) /\ path_component_of a = cmp) -> + (forall (cmp : @path_components _ i R), + exists (a : R), A (projT1 a) /\ path_component_of a = cmp) -> + (forall (cmp : @path_components _ i (L `&` R)), + exists (a : (L `&` R)), A (projT1 a) /\ path_component_of a = cmp) -> + ( + let l1 := fdg_lift (@set_valIL _ L R) in + let r1 := fdg_lift (@set_valIR _ L R) in + forall U : topologicalType, + forall (kobj : L -> U) k (hobj : R -> U) h, + fdg_functor kobj k -> + fdg_functor hobj h + + True + ) +. +*) \ No newline at end of file diff --git a/theories/separation_axioms.v b/theories/separation_axioms.v index ff6f7702c..209e6701b 100644 --- a/theories/separation_axioms.v +++ b/theories/separation_axioms.v @@ -176,7 +176,7 @@ Qed. Lemma accessible_closed_set1 : accessible_space -> forall x : T, closed [set x]. Proof. move=> T1 x; rewrite -[X in closed X]setCK; apply: open_closedC. -rewrite openE => y /eqP /T1 [U [oU yU xU]]. +rewrite openE => y /eqP /T1 [U [oU [yU xU]]]. rewrite /interior nbhsE /=; exists U; last by rewrite subsetC1. by split=> //; exact: set_mem. Qed.