From 9f5064f70e787e995d1310db359d6c3d65d51d69 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Fri, 3 Jan 2025 11:08:40 +0900 Subject: [PATCH] minor fix --- theories/kernel.v | 4 ++-- theories/lebesgue_integral.v | 2 +- theories/prob_lang.v | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/theories/kernel.v b/theories/kernel.v index 8b9d428a8..86fa740c6 100644 --- a/theories/kernel.v +++ b/theories/kernel.v @@ -1566,14 +1566,14 @@ Definition mkproduct := End kproduct_measure. -(* [Theorem 14.22, Klenke 2014] (3/3): the composition of finite transition - kernels is sigma-finite *) HB.instance Definition _ d0 d1 d2 (T0 : measurableType d0) (T1 : measurableType d1) (T2 : measurableType d2) {R : realType} (k1 : R.-ftker T0 ~> T1) (k2 : R.-ftker (T0 * T1) ~> T2) := @isKernel.Build _ _ T0 (T1 * T2)%type R (mkproduct k1 k2) (measurable_kproduct k1 k2). +(* [Theorem 14.22, Klenke 2014] (3/3): the composition of finite transition + kernels is sigma-finite *) Section sigma_finite_kproduct. Context d0 d1 d2 (T0 : measurableType d0) (T1 : measurableType d1) (T2 : measurableType d2) {R : realType} diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index 284f18536..d02164a02 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -5950,7 +5950,7 @@ Context d d' (X : measurableType d) (Y : measurableType d') (R : realType). Variables (m1 : {sfinite_measure set X -> \bar R}). Variables (m2 : {sfinite_measure set Y -> \bar R}). Variables (f : X * Y -> \bar R) (f0 : forall xy, 0 <= f xy). -Hypothesis mf : measurable_fun setT f. +Hypothesis mf : measurable_fun [set: X * Y] f. Lemma sfinite_Fubini : \int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y). diff --git a/theories/prob_lang.v b/theories/prob_lang.v index 24ae6a524..efa884970 100644 --- a/theories/prob_lang.v +++ b/theories/prob_lang.v @@ -1466,8 +1466,8 @@ by rewrite /score/= /mscale/= ger0_norm//= f0. Qed. Lemma score_score (f : R -> R) (g : R * unit -> R) - (mf : measurable_fun setT f) - (mg : measurable_fun setT g) : + (mf : measurable_fun [set: R] f) + (mg : measurable_fun [set: R * unit] g) : letin (score mf) (score mg) = score (measurable_funM mf (measurableT_comp mg (measurable_pair2 tt))). Proof.