diff --git a/theories/homotopy.v b/theories/homotopy.v index 0517fa9c26..b99fd7503f 100644 --- a/theories/homotopy.v +++ b/theories/homotopy.v @@ -577,41 +577,41 @@ Qed. Definition equiv_rel_reparametrize := EquivRel reparametrize reflexive_reparametrize symmetric_reparametrize transitive_reparametrize. -Definition Path := {eq_quot equiv_rel_reparametrize}. +Definition RPath := {eq_quot equiv_rel_reparametrize}. -Definition path_init := lift_fun1 Path (fun f => f 0). +Definition path_init := lift_fun1 RPath (fun f => f 0). -Lemma path_init_mono : {mono \pi_Path : f / f 0 >-> path_init f}. +Lemma path_init_mono : {mono \pi_RPath : f / f 0 >-> path_init f}. Proof. move=> f; unlock path_init. -have : ((repr (\pi_(Path) f)) = f %[mod Path]) by rewrite reprK. +have : ((repr (\pi_(RPath) f)) = f %[mod RPath]) by rewrite reprK. move=> /eqquotP /asboolP [] gamma /(_ 0). by rewrite bound_itvE /= parametrize_init; exact. Qed. Canonical pi_path_init_mono := PiMono1 path_init_mono. -Definition path_final := lift_fun1 Path (fun f => f 1). +Definition path_final := lift_fun1 RPath (fun f => f 1). -Lemma path_final_mono : {mono \pi_Path : f / f 1 >-> path_final f}. +Lemma path_final_mono : {mono \pi_RPath : f / f 1 >-> path_final f}. Proof. move=> f; unlock path_final. -have : ((repr (\pi_(Path) f)) = f %[mod Path]) by rewrite reprK. +have : ((repr (\pi_(RPath) f)) = f %[mod RPath]) by rewrite reprK. move=> /eqquotP /asboolP [] gamma /(_ 1). by rewrite bound_itvE /= parametrize_final; exact. Qed. Canonical pi_path_final_mono := PiMono1 path_final_mono. -Definition path_image := lift_fun1 Path (fun f => f @` `[0,1] ). +Definition path_image := lift_fun1 RPath (fun f => f @` `[0,1] ). -Lemma path_image_mono : {mono \pi_Path : f / f @` `[0,1] >-> path_image f}. +Lemma path_image_mono : {mono \pi_RPath : f / f @` `[0,1] >-> path_image f}. Proof. move=> f; unlock path_image; rewrite eqEsubset; split => z /= [w wI] <-. - have /eqquotP/asboolP [gamma fg]: f = repr (\pi_(Path) f) %[mod Path]. + have /eqquotP/asboolP [gamma fg]: f = repr (\pi_(RPath) f) %[mod RPath]. by rewrite reprK. by (exists (gamma w); last exact: fg); exact: (@funS _ _ _ _ gamma). -have /eqquotP/asboolP [gamma fg]: repr (\pi_(Path) f) = f %[mod Path]. +have /eqquotP/asboolP [gamma fg]: repr (\pi_(RPath) f) = f %[mod RPath]. by rewrite reprK. (exists (gamma w); last exact: fg); exact: (@funS _ _ _ _ gamma). Qed. @@ -620,25 +620,25 @@ Canonical pi_path_image_mono := PiMono1 path_image_mono. Let cts_fun_rev (f : R -> T) := f \o rev_param. -Definition path_reverse := lift_op1 Path cts_fun_rev. +Definition path_reverse := lift_op1 RPath cts_fun_rev. Lemma path_reverse_morph : {morph \pi : f / cts_fun_rev f >-> path_reverse f}. Proof. move=> f /=; unlock path_reverse; apply/eqquotP/asboolP. -have /eqquotP/asboolP [gamma fg]: repr (\pi_(Path) f) = f %[mod Path]. +have /eqquotP/asboolP [gamma fg]: repr (\pi_(RPath) f) = f %[mod RPath]. by rewrite reprK. exists (double_reverse_inj (inv_parametrization gamma)) => x x01 /=. have gx01 : (gamma^-1)%function (rev_param x) \in `[0, 1]. apply: (@funS _ _ _ _ [fun of inv_parametrization gamma]). exact: funS. -rewrite /cts_fun_rev /= (@rev_param_cancel _ `[0,1]%classic) -?fg ?inE // /Path. +rewrite /cts_fun_rev /= (@rev_param_cancel _ `[0,1]%classic) -?fg ?inE // /RPath. have /= := (@funK _ _ _ (inv_parametrization gamma) (rev_param x)). by rewrite invV => -> //=; apply/mem_set; exact: funS. Qed. Canonical pi_path_reverse_morph := PiMorph1 path_reverse_morph. -Lemma path_reverse_final_initE (f : Path) : +Lemma path_reverse_final_initE (f : RPath) : path_final (path_reverse f) = path_init f. Proof. have := path_init_mono (repr f); rewrite reprK => ->. @@ -647,7 +647,7 @@ rewrite (path_final_mono (cts_fun_rev (repr f))). by rewrite /cts_fun_rev /= /rev_param onem1. Qed. -Lemma path_reverse_init_finalE (f : Path) : +Lemma path_reverse_init_finalE (f : RPath) : path_init (path_reverse f) = path_final f. Proof. have := path_final_mono (repr f); rewrite reprK => ->. @@ -656,18 +656,18 @@ rewrite (path_init_mono (cts_fun_rev (repr f))). by rewrite /cts_fun_rev /= /rev_param onem0. Qed. -Lemma path_cts : {mono \pi_Path : f / {within `[0,1], continuous f} +Lemma path_cts : {mono \pi_RPath : f / {within `[0,1], continuous f} >-> {within `[0,1], continuous (repr f)}}. Proof. move=> f; rewrite propeqE; split => ctsF. - have /eqquotP/asboolP [gamma fpp]: repr (\pi_Path f) = f %[mod Path]. + have /eqquotP/asboolP [gamma fpp]: repr (\pi_RPath f) = f %[mod RPath]. by rewrite reprK. apply: subspace_eq_continuous. move=> x /set_mem /=; move: x; exact: fpp. move=> x; apply: (@continuous_comp (subspace_topologicalType _) (subspace_topologicalType `[0,1]) _). by apply: subspaceT_continuous; [exact: funS | exact: continuous_fun]. exact: ctsF. -have /eqquotP/asboolP [gamma fpp]: f = repr (\pi_Path f) %[mod Path]. +have /eqquotP/asboolP [gamma fpp]: f = repr (\pi_RPath f) %[mod RPath]. by rewrite reprK. apply: subspace_eq_continuous. move=> x /set_mem /=; move: x; exact: fpp. @@ -678,14 +678,14 @@ Qed. Canonical pi_path_cts_mono := PiMono1 path_cts. -Definition path_link := lift_op2 Path split_domain. +Definition path_link := lift_op2 RPath split_domain. Lemma path_link_morph : {morph \pi : f g / split_domain f g >-> path_link f g}. Proof. move=> f g /=; unlock path_link; apply/eqquotP/asboolP. -have /eqquotP/asboolP [r1 fpp]: (f = (repr (\pi_(Path) f)) %[mod Path]). +have /eqquotP/asboolP [r1 fpp]: (f = (repr (\pi_(RPath) f)) %[mod RPath]). by rewrite reprK. -have /eqquotP/asboolP [r2 gpp]: (g = (repr (\pi_(Path) g)) %[mod Path]). +have /eqquotP/asboolP [r2 gpp]: (g = (repr (\pi_(RPath) g)) %[mod RPath]). by rewrite reprK. exists (split_parametrize r1 r2) => x x01. have : affine 2 0 x \in `[0,2]. @@ -721,237 +721,46 @@ Canonical pi_path_chain_morph := PiMorph2 path_link_morph. End Reparametrization. -HB.mixin Record IsPathFrom {R : realType} {T : topologicalType} (B : set T) - (x : T) (f : @Path R _ B) := - { - initial_in : B x; - from_point : path_init f = x; - }. - -HB.structure Definition PathFrom {R : realType} {T : topologicalType} (B : set T) - (x : T) := {f of @IsPathFrom R T B x f}. - -HB.mixin Record IsPathTo {R : realType} {T : topologicalType} (B : set T) - (x : T) (f : @Path R _ B) := - { - final_in : B x; - to_point : path_final f = x; - }. - -HB.structure Definition PathTo {R : realType} {T : topologicalType} - (B : set T) (x : T) := {f of @IsPathTo R T B x f}. - -HB.structure Definition PathBetween {R : realType} {T : topologicalType} - {B : set T} (x y : T) := {f of (@PathFrom R T B x f) & (@PathTo R T B y f)}. - -Notation "{ 'path' R 'from' x 'to' y 'in' B }" := - (@PathBetween.type R _ B x y) : form_scope. - -Notation "{ 'Loop' R 'at' x 'in' B }" := - (@PathBetween.type R _ B x x) : form_scope. - -Notation "[ 'loop' 'at' x 'of' f ]" := - ([the (@PathBetween.type _ _ _ x x) of (f: @Path _ _ _)]) : form_scope. - -Section Paths. -Context {R : realType} {T : topologicalType} (B : set T). -Section ConstantPath. -Variable (x : T). -Hypothesis Bx : B x. - -Local Lemma cst_fun : set_fun `[(0:R),1]%classic B (cst x). -Proof. by []. Qed. -HB.instance Definition _ := @IsFun.Build _ _ _ _ _ cst_fun. - -Local Lemma cst_continuous : {within `[0,1], continuous (@cst R _ x)}. -Proof. by apply: continuous_subspaceT => ? ?; exact: cst_continuous. Qed. - -HB.instance Definition _ := @IsContinuous.Build _ _ _ _ cst_continuous. - -Definition cst_path := \pi_(Path B) (@cst R _ x). - -Local Lemma cst_path_from : @PathFrom R T B x cst_path. -Proof. by split; split; rewrite // path_init_mono. Qed. -HB.instance Definition _ := cst_path_from. - -Local Lemma cst_path_to : @PathTo R T B x cst_path. -Proof. by split; split; rewrite // path_final_mono. Qed. -HB.instance Definition _ := cst_path_to. - -Definition cst_loop := [loop at x of cst_path]. -End ConstantPath. - -Section ReversePathEndpoints. -Variable (x : T). -Lemma path_rev_from (f : @PathFrom.type R T B x) : @PathTo R T B x (path_reverse f) . -Proof. -split; split; first exact: (@initial_in _ _ _ _ f). -by rewrite path_reverse_final_initE from_point. -Qed. - -HB.instance Definition _ f := @path_rev_from f. - -Lemma path_rev_to (f : @PathTo.type R T B x) : @PathFrom R T B x (path_reverse f) . -Proof. -split; split; first exact: (@final_in _ _ _ _ f). -by rewrite path_reverse_init_finalE to_point. -Qed. - -HB.instance Definition _ f := @path_rev_to f. -End ReversePathEndpoints. - -Section ReverseLoop. -Variable (x : T) (f : {Loop R at x in B}). - -HB.instance Definition _ := @path_rev_to x f. -HB.instance Definition _ := @path_rev_from x f. -HB.instance Definition _ := PathBetween.on (path_reverse f). - -End ReverseLoop. - -Section SplitDomainPath. -Context (x : T) (f : PathTo.type R B x) (g : PathFrom.type R B x). - -Let f' := repr (f : Path B). -Let g' := repr (g : Path B). - -Local Lemma endpointsE2 : g' 0 = f' 1. -by rewrite -path_init_mono -path_final_mono ?reprK from_point to_point. -Qed. - -Local Lemma cts_split_domain2 : {within `[0,1], continuous (split_domain f' g')}. -Proof. by apply: h_cts; rewrite endpointsE2. Qed. - -HB.instance Definition P1 := @IsContinuous.Build _ _ _ _ cts_split_domain2. - -Definition split_path := \pi_(Path B) [continuous of (split_domain f' g')]. -End SplitDomainPath. - -Section SplitDomainMorph. -Variables (p q : {continuous `[(0:R),1] >-> B}). -Hypothesis endpointsE1 : q 0 = p 1. +HB.mixin Record IsRPathFrom {R} {T : topologicalType} + (x : T) (f : @RPath R T) := + { from_point : path_init f = x }. -Lemma cts_split_domain1 : {within `[0,1], continuous (split_domain p q)}. -Proof. by apply: h_cts; rewrite endpointsE1. Qed. +HB.structure Definition RPathFrom {R} {T : topologicalType} + (x : T) := {f of @IsRPathFrom R T x f}. -HB.instance Definition _ := Fun.on (split_domain p q). -HB.instance Definition P2 := @IsContinuous.Build _ _ _ _ cts_split_domain1. +HB.mixin Record IsRPathTo {R} {T : topologicalType} + (x : T) (f : @RPath R T) := + { to_point : path_final f = x }. -Let split_aux : {continuous `[0,1] >-> B} := HB.pack (split_domain p q) P2. - -Local Lemma path_from_q : @PathFrom R T B (q 0) (\pi_(Path B) q). -Proof. -split; split; first by apply: funS; rewrite /= bound_itvE. -exact: path_init_mono. -Qed. - -HB.instance Definition _ := path_from_q. - -Local Lemma path_to_p : @PathTo R T B (q 0) (\pi_(Path B) p). -Proof. -split; split; first by rewrite endpointsE1; apply: funS; rewrite /= bound_itvE. -by rewrite endpointsE1 -path_final_mono. -Qed. - -HB.instance Definition _ := path_to_p. - -Lemma split_domain_morph : - \pi_(Path B) split_aux = split_path - ([the (PathTo.type R B (q 0)) of (\pi_(Path B) p : Path B)]) - ([the (PathFrom.type R B (q 0)) of (\pi_(Path B) q : Path B)]). -Proof. -apply/eqquotP/asboolP => //=. -have /eqquotP/asboolP [gamma rpp]: repr (\pi_(Path B) p) = p %[mod Path B]. - by rewrite reprK. -have /eqquotP/asboolP [delta rqq]: repr (\pi_(Path B) q) = q %[mod Path B]. - by rewrite reprK. -eexists => x x01. -rewrite /split_domain/patch /= -rpp -?rqq /=. -pose lhs := fun z => (inv_parametrization gamma) z / 2. -pose rhs := fun z => ((inv_parametrization delta) z / 2) + 1/2. -exists (split_domain lhs rhs delta) - - -Lemma split_domain_morph : \pi_(Path B) split1 = \pi_(Path B) split2. - -Lemma chain_from_x : @PathFrom R T B x (@chain y f g). -Proof. -split; split; first (apply: initial_in; exact: f). -rewrite path_init_mono /= /ftheng /patch; case: ifP => //=. - by move=> _; rewrite mul0r -path_init_mono reprK from_point. -by rewrite mem_setE /= in_itv /= => /andP []. -Qed. - -HB.instance Definition _ := chain_from_x. -End AddStart. - -Section AddEnd. -Context (x y : T) (f : PathTo.type R B x) (g : {path R from x to y in B}) . - -Lemma chain_to_y : @PathTo R T B y (@chain x f g). -Proof. -split; split; first (apply: final_in; exact: g). -rewrite path_final_mono /= /ftheng /patch; case: ifP => //=. - rewrite mem_setE /= in_itv /= => /andP [_]; rewrite ler_pdivl_mulr // mul1r. - by rewrite real_leNgt // => /negP []; rewrite ltr_addr. -move=> _; rewrite mul1r (_ : 2 - 1 = 1) -?path_final_mono ?reprK ?to_point //. -by apply/eqP; rewrite subr_eq. -Qed. - -HB.instance Definition _ := chain_to_y. -End AddEnd. - -Section AddLoop. -Context (x : T) (f g : {Loop R at x in B}). - -HB.instance Definition _ := PathFrom.on (chain f g). -HB.instance Definition _ := PathTo.on (chain f g). -HB.instance Definition _ := PathBetween.on (chain f g). - -End AddLoop. - -Section loops_zmod. -Variable (x : T). -Hypotheses Bx : B x. - -Definition loop_id : {Loop R at x in B} := (cst_loop Bx). - -Definition loop_reverse (f : {Loop R at x in B}) : {Loop R at x in B} := - [loop at x of (path_reverse f)]. - -Definition loop_chain (f g : {Loop R at x in B}) : {Loop R at x in B} := - [loop at x of @chain x f g]. - -Definition loops_zmodMixin := - @ZmodMixin {Loop R at x in B} (loop_id) - (loop_reverse) (loop_chain). +HB.structure Definition RPathTo {R} {T : topologicalType} + (x : T) := {f of @IsRPathTo R T x f}. +HB.structure Definition RPathBetween {R} {T : topologicalType} + (x y : T) := {f of (@RPathFrom R T x f) & (@RPathTo R T y f)}. +HB.mixin Record IsPath {R} {T : topologicalType} (B : set T) (f : @RPath R T) := + { + continuous_path : {within `[0,1], continuous (repr f)}; + path_fun : set_fun `[0,1]%classic B (repr f); + }. -Section path_components. +HB.structure Definition Path {R} {T : topologicalType} (B : set T) := + { f of IsPath R T B f}. -Definition same_path_component (t u : {x : T | B x}) := - `[]. +HB.structure Definition PathFrom {R} {T : topologicalType} (B : set T) (x : T) := + { f of IsPath R T B f & IsRPathFrom R T x f}. -Lemma reflexive_path_comp : reflexive same_path_component. -Proof. -by case=> t Bt; apply/asboolP; exists (constant_path Bt). -Qed. +HB.structure Definition PathTo {R} {T : topologicalType} (B : set T) (y : T) := + { f of IsPath R T B f & IsRPathTo R T y f}. -Lemma symmetric_path_comp : symmetric same_path_component. -Proof. -move=> x y. apply/asbool_equiv_eq; split; case=> f _. - by exists [path from (projT1 y) to (projT1 x) of (reverse_path f)]. -by exists [path from (projT1 x) to (projT1 y) of (reverse_path f)]. -Qed. +HB.structure Definition PathBetween {R} {T : topologicalType} (B : set T) (x y : T) := + { f of IsPath R T B f & IsRPathFrom R T x f & IsRPathTo R T y f}. -Lemma transitive_path_comp : transitive same_path_component. -Proof. -move=> ? ? ? /asboolP [f _] /asboolP [g _]; apply/asboolP. -by exists (chain f g). -Qed. +Notation "{ 'path' R 'from' x 'to' y 'in` B }" := + (@PathBetween.type R _ B x y) : form_scope. -Definition path_components_rel := EquivRel same_path_component - reflexive_path_comp symmetric_path_comp transitive_path_comp. +Notation "{ 'Loop' R 'at' x 'in' B }" := + (@PathBetween.type R _ B x x) : form_scope. -End path_components. +Notation "[ 'loop' of' f ]" := + ([the (@PathBetween.type _ _ _ _ _) of (f: @Path _ _ _)]) : form_scope.