From ac4dda0af8d3077fcd705c17b6ae240cf7eeac47 Mon Sep 17 00:00:00 2001 From: HW DU <44920119+dhw059@users.noreply.github.com> Date: Sun, 7 Apr 2024 16:06:30 +0800 Subject: [PATCH] Add files via upload --- benchmarks/matbench_v0.1_DensGNN/train.ipynb | 180 +++++++++++++++++++ 1 file changed, 180 insertions(+) create mode 100644 benchmarks/matbench_v0.1_DensGNN/train.ipynb diff --git a/benchmarks/matbench_v0.1_DensGNN/train.ipynb b/benchmarks/matbench_v0.1_DensGNN/train.ipynb new file mode 100644 index 00000000..af9cb50f --- /dev/null +++ b/benchmarks/matbench_v0.1_DensGNN/train.ipynb @@ -0,0 +1,180 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os.path\n", + "import argparse\n", + "import pandas as pd\n", + "import tensorflow as tf\n", + "from matbench.bench import MatbenchBenchmark\n", + "from kgcnn.data.crystal import CrystalDataset\n", + "from kgcnn.literature.DenseGNN import make_model_asu\n", + "\n", + "from sklearn.preprocessing import StandardScaler\n", + "from kgcnn.training.schedule import LinearWarmupExponentialDecay\n", + "from kgcnn.training.scheduler import LinearLearningRateScheduler\n", + "import kgcnn.training.callbacks\n", + "from kgcnn.utils.devices import set_devices_gpu\n", + "import numpy as np\n", + "from copy import deepcopy\n", + "from hyper import *\n", + "\n", + "parser = argparse.ArgumentParser(description='Train DenseGNN.')\n", + "parser.add_argument(\"--gpu\", required=False, help=\"GPU index used for training.\",\n", + " default=None, nargs=\"+\", type=int)\n", + "args = vars(parser.parse_args())\n", + "print(\"Input of argparse:\", args)\n", + "gpu_to_use = args[\"gpu\"]\n", + "set_devices_gpu(gpu_to_use)\n", + "\n", + "subsets_compatible = [\"matbench_jdft2d\", \"matbench_phonons\", \"matbench_mp_gap\", \n", + " \"matbench_perovskites\",\n", + " \"matbench_log_kvrh\", \"matbench_log_gvrh\", \"matbench_dielectric\"]\n", + "mb = MatbenchBenchmark(subset=subsets_compatible, autoload=False)\n", + "\n", + "callbacks = {\n", + " \"graph_labels\": lambda st, ds: np.expand_dims(ds, axis=-1),\n", + " \"node_coordinates\": lambda st, ds: np.array(st.cart_coords, dtype=\"float\"),\n", + " \"node_frac_coordinates\": lambda st, ds: np.array(st.frac_coords, dtype=\"float\"),\n", + " \"graph_lattice\": lambda st, ds: np.ascontiguousarray(np.array(st.lattice.matrix), dtype=\"float\"),\n", + " \"abc\": lambda st, ds: np.array(st.lattice.abc),\n", + " \"charge\": lambda st, ds: np.array([st.charge], dtype=\"float\"),\n", + " \"volume\": lambda st, ds: np.array([st.lattice.volume], dtype=\"float\"),\n", + " \"node_number\": lambda st, ds: np.array(st.atomic_numbers, dtype=\"int\"),\n", + "}\n", + "\n", + "hyper_all = {\n", + " \"matbench_jdft2d\": hyper_1,\n", + " \"matbench_phonons\": hyper_2,\n", + " \"matbench_mp_gap\": hyper_3,\n", + " \"matbench_perovskites\": hyper_4,\n", + " \"matbench_log_kvrh\": hyper_5,\n", + " \"matbench_log_gvrh\": hyper_6,\n", + " \"matbench_dielectric\": hyper_7,\n", + "}\n", + "\n", + "restart_training = True\n", + "remove_invalid_graphs_on_predict = True\n", + "\n", + "for idx_task, task in enumerate(mb.tasks):\n", + " task.load()\n", + " for i, fold in enumerate(task.folds):\n", + " hyper = deepcopy(hyper_all[task.dataset_name])\n", + "\n", + " # Define loss for either classification or regression\n", + " loss = {\n", + " \"class_name\": \"BinaryCrossentropy\", \"config\": {\"from_logits\": True}\n", + " } if task.metadata[\"task_type\"] == \"classification\" else \"mean_absolute_error\"\n", + " hyper[\"training\"][\"compile\"][\"loss\"] = loss\n", + "\n", + " if restart_training and os.path.exists(\n", + " \"%s_predictions_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i)):\n", + " predictions = np.load(\n", + " \"%s_predictions_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i)\n", + " )\n", + " task.record(fold, predictions)\n", + " continue\n", + "\n", + " train_inputs, train_outputs = task.get_train_and_val_data(fold)\n", + " data_train = CrystalDataset()\n", + "\n", + " data_train._map_callbacks(train_inputs, pd.Series(train_outputs.values), callbacks)\n", + " print(\"Making graph... (this may take a while)\")\n", + " data_train.set_methods(hyper[\"data\"][\"dataset\"][\"methods\"])\n", + " data_train.clean(hyper[\"model\"][\"config\"][\"inputs\"])\n", + "\n", + " y_train = np.array(data_train.get(\"graph_labels\"))\n", + " x_train = data_train.tensor(hyper[\"model\"][\"config\"][\"inputs\"])\n", + "\n", + " if task.metadata[\"task_type\"] == \"classification\":\n", + " scaler = None\n", + " else:\n", + " scaler = StandardScaler(**hyper[\"training\"][\"scaler\"][\"config\"])\n", + " y_train = scaler.fit_transform(y_train)\n", + " print(y_train.shape)\n", + "\n", + " # train and validate your model\n", + " model = make_model_asu(**hyper[\"model\"][\"config\"])\n", + " model.compile(\n", + " loss=tf.keras.losses.get(hyper[\"training\"][\"compile\"][\"loss\"]),\n", + " optimizer=tf.keras.optimizers.get(hyper[\"training\"][\"compile\"][\"optimizer\"])\n", + " )\n", + " hist = model.fit(\n", + " x_train, y_train,\n", + " batch_size=hyper[\"training\"][\"fit\"][\"batch_size\"],\n", + " epochs=hyper[\"training\"][\"fit\"][\"epochs\"],\n", + " verbose=hyper[\"training\"][\"fit\"][\"verbose\"],\n", + " callbacks=[tf.keras.utils.deserialize_keras_object(x) for x in hyper[\"training\"][\"fit\"][\"callbacks\"]]\n", + " )\n", + "\n", + " # Get testing data\n", + " test_inputs = task.get_test_data(fold, include_target=False)\n", + " data_test = CrystalDataset()\n", + " data_test._map_callbacks(test_inputs, pd.Series(np.zeros(len(test_inputs))), callbacks)\n", + " print(\"Making graph... (this may take a while)\")\n", + " data_test.set_methods(hyper[\"data\"][\"dataset\"][\"methods\"])\n", + "\n", + " if remove_invalid_graphs_on_predict:\n", + " removed = data_test.clean(hyper[\"model\"][\"config\"][\"inputs\"])\n", + " np.save(\n", + " \"%s_predictions_invalid_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i),\n", + " removed\n", + " )\n", + " else:\n", + " removed = None\n", + "\n", + " # Predict on the testing data\n", + " x_test = data_test.tensor(hyper[\"model\"][\"config\"][\"inputs\"])\n", + " predictions_model = model.predict(x_test)\n", + "\n", + " if remove_invalid_graphs_on_predict:\n", + " indices_test = [j for j in range(len(test_inputs))]\n", + " for j in removed:\n", + " indices_test.pop(j)\n", + " predictions = np.expand_dims(np.zeros(len(test_inputs), dtype=\"float\"), axis=-1)\n", + " predictions[np.array(indices_test)] = predictions_model\n", + " else:\n", + " predictions = predictions_model\n", + "\n", + " if task.metadata[\"task_type\"] == \"classification\":\n", + " def np_sigmoid(x):\n", + " return np.exp(-np.logaddexp(0, -x))\n", + " predictions = np_sigmoid(predictions)\n", + " else:\n", + " predictions = scaler.inverse_transform(predictions)\n", + "\n", + " if predictions.shape[-1] == 1:\n", + " predictions = np.squeeze(predictions, axis=-1)\n", + "\n", + " np.save(\n", + " \"%s_predictions_%s_fold_%s.npy\" % (task.dataset_name, hyper[\"model\"][\"config\"][\"name\"], i),\n", + " predictions\n", + " )\n", + "\n", + " # Record data!\n", + " task.record(fold, predictions)\n", + "\n", + "# Save your results\n", + "mb.to_file(\"results_densegnn.json.gz\")\n", + "\n", + "for key, values in mb.scores.items():\n", + " factor = 1000.0 if key in [\"matbench_jdft2d\"] else 1.0\n", + " if key not in [\"matbench_mp_is_metal\"]:\n", + " print(key, factor*values[\"mae\"][\"mean\"], factor*values[\"mae\"][\"std\"])\n", + " else:\n", + " print(key, values[\"rocauc\"][\"mean\"], values[\"rocauc\"][\"std\"])\n" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}