Skip to content

Latest commit

 

History

History
80 lines (60 loc) · 3.85 KB

File metadata and controls

80 lines (60 loc) · 3.85 KB

Kaggle Competition: Predict which Tweets are about real disasters and which ones are not

Final Rank and Result

Leadboard is here

Model Best Accuracy Rank
BERT 84.13% 39/860 Top 4%
RoBERTa 83.97% 53/860 Top 6%

Set-up

Operation System:

macOS Badge Linux Badge Ubuntu Badge

Language and Additional Packages:

Python PyTorch Scikit-learn NumPy tqdm pandas SciPy colorama cudatoolkit datasets matplotlib nltk tokenizers transformers seaborn

GPU:

Nvidia

Environment

username@localhost:~$ conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
username@localhost:~$ pip install transformers
username@localhost:~$ pip install datasets
username@localhost:~$ pip install -U scikit-learn
username@localhost:~$ pip install numpy
username@localhost:~$ pip install pandas
username@localhost:~$ pip install tqdm
username@localhost:~$ pip install colorama
username@localhost:~$ pip install seaborn
username@localhost:~$ pip install nltk

How to run

Tuning Parameters

The first choice is tuning parameters, you can directly run the run.sh file. It will take a long time, about 100hrs. The best parameters for different model are provided below.

username@localhost:~$ bash /src/run.sh

Training

Meanwhile, you can just run the python file, it will be executed once, and the result will be printed. You can try different parameters before you execute the python file.

username@localhost:~$ python3 /src/train.py --model_name [$model_name] --threshold [$threshold] --batchsize [$batchsize] --dropout [$dropout] --layer[$layer] 

Reproduce

Run the following command, which can achieve the best result of BERT model.

python src/train.py \
	--model_name bert_base \
	--threshold 0.6 \
	--batchsize 8 \
	--dropout 0.3 \
	--layer 3

Run the following command, which can achieve the best result of RoBERTa model.

python src/train.py \
	--model_name roberta_base \
	--threshold 0.6 \
	--batchsize 16 \
	--dropout 0.3 \
	--layer 1

Note: The results of each run may deviate slightly