Skip to content

Latest commit

 

History

History
75 lines (47 loc) · 2.74 KB

README.md

File metadata and controls

75 lines (47 loc) · 2.74 KB

NeurIPS 2021

This summarizes the evaluation protocol and the results of the NeurIPS 2021 Challenge.

NeurIPS 2021: Algorithms and Result Evaluation

See Track T1/T2 for more details on evaluation for Tracks T1 and T2.

See Track T3 for more details on evaluation for Track T3.

See PMLR article for the official competition report with plots.

Install

The only prerequisite is Python and Docker.

  1. Clone the repo.
  2. Run pip install -r requirements_py3.10.txt (Use requirements_py38.txt if you have Python 3.8.)
  3. Install docker by following instructions here. You might also want to follow the post-install steps for running docker in non-root user mode.
  4. Run python install.py to build all the libraries inside Docker containers.

Storing Data

The framework assumes that all data is stored in data/. Please use a symlink if your datasets and indices are supposed to be stored somewhere else. The location of the linked folder matters a great deal for SSD-based search performance in T2. A local SSD such as the one found on Azure Ls-series VMs is better than remote disks, even premium ones. See T1/T2 for more details.

Dataset Preparation

Before running experiments, datasets have to be downloaded. All preparation can be carried out by calling

python create_dataset.py --dataset [bigann-1B | deep-1B | text2image-1B | ssnpp-1B | msturing-1B | msspacev-1B]

Note that downloading the datasets can potentially take many hours.

For local testing, there exist smaller random datasets random-xs and random-range-xs. Furthermore, most datasets have 1M, 10M and 100M versions, run python create_dataset -h to get an overview.

Running the benchmark

Run python run.py --dataset $DS --algorithm $ALGO where DS is the dataset you are running on, and ALGO is the name of the algorithm. (Use python run.py --list-algorithms) to get an overview. python run.py -h provides you with further options.

The parameters used by the implementation to build and query the index can be found in algos-2021.yaml.

Running the track 1 baseline

After running the installation, we can evaluate the baseline as follows.

for DS in bigann-1B  deep-1B  text2image-1B  ssnpp-1B  msturing-1B  msspacev-1B;
do
    python run.py --dataset $DS --algorithm faiss-t1;
done

On a 28-core Xeon E5-2690 v4 that provided 100MB/s downloads, carrying out the baseline experiments took roughly 7 days.

To evaluate the results, run

sudo chmod -R 777 results/
python data_export.py --output res.csv
python3.8 eval/show_operating_points.py --algorithm faiss-t1 --threshold 10000