The commonest use of coordinate variables is to locate the data in space and time, but coordinates may be provided for any other continuous geophysical quantity (e.g. density, temperature, radiation wavelength, zenith angle of radiance, sea surface wave frequency) or discrete category (see Section 4.5, "Discrete Axis", e.g. area type, model level number, ensemble member number) on which the data variable depends.
Four types of coordinates receive special treatment by these conventions: latitude, longitude, vertical, and time. We continue to support the special role that the units
and positive
attributes play in the COARDS convention to identify coordinate type. We extend COARDS by providing explicit definitions of dimensionless vertical coordinates. The definitions are associated with a coordinate variable via the standard_name
and formula_terms
attributes. For backwards compatibility with COARDS use of these attributes is not required, but is strongly recommended.
Because identification of a coordinate type by its units is complicated by requiring the use of an external software package [UDUNITS] , we provide two optional methods that yield a direct identification. The attribute axis
may be attached to a coordinate variable and given one of the values X
, Y
, Z
or T
which stand for a longitude, latitude, vertical, or time axis respectively. Alternatively the standard_name
attribute may be used for direct identification. But note that these optional attributes are in addition to the required COARDS metadata.
To identify generic spatial coordinates we recommend that the axis
attribute be attached to these coordinates and given one of the values X
, Y
or Z
. The values X
and Y
for the axis attribute should be used to identify horizontal coordinate variables. If both X- and Y-axis are identified, X-Y-up
should define a right-handed coordinate system, i.e. rotation from the positive X direction to the positive Y direction is anticlockwise if viewed from above. We strongly recommend that coordinate variables be used for all coordinate types whenever they are applicable.
The methods of identifying coordinate types described in this section apply both to coordinate variables and to auxiliary coordinate variables named by the coordinates
attribute (see [coordinate-system]).
The values of a coordinate variable or auxiliary coordinate variable indicate the locations of the gridpoints. The locations of the boundaries between cells are indicated by bounds variables (see [cell-boundaries]). If bounds are not provided, an application might reasonably assume the gridpoints to be at the centers of the cells, but we do not require that in this standard.
Variables representing latitude must always explicitly include the units
attribute; there is no default value. The units
attribute will be a string formatted as per the udunits.dat
file. The recommended unit of latitude is degrees_north
. Also acceptable are degree_north
, degree_N
, degrees_N
, degreeN
, and degreesN
.
float lat(lat) ; lat:long_name = "latitude" ; lat:units = "degrees_north" ; lat:standard_name = "latitude" ;
Application writers should note that the Udunits package does not recognize the directionality implied by the "north" part of the unit specification. It only recognizes its size, i.e., 1 degree is defined to be pi/180 radians. Hence, determination that a coordinate is a latitude type should be done via a string match between the given unit and one of the acceptable forms of degrees_north
.
Optionally, the latitude type may be indicated additionally by providing the standard_name
attribute with the value latitude
, and/or the axis
attribute with the value Y
.
Coordinates of latitude with respect to a rotated pole should be given units of degrees
, not degrees_north
or equivalents, because applications which use the units to identify axes would have no means of distinguishing such an axis from real latitude, and might draw incorrect coastlines, for instance.
Variables representing longitude must always explicitly include the units
attribute; there is no default value. The units attribute
will be a string formatted as per the udunits.dat
file. The recommended unit of longitude is degrees_east
. Also acceptable are degree_east
, degree_E
, degrees_E
, degreeE
, and degreesE
.
float lon(lon) ; lon:long_name = "longitude" ; lon:units = "degrees_east" ; lon:standard_name = "longitude" ;
Application writers should note that the Udunits package has limited recognition of the directionality implied by the "east" part of the unit specification. It defines degrees_east
to be pi/180 radians, and hence equivalent to degrees_north
. We recommend the determination that a coordinate is a longitude type should be done via a string match between the given unit and one of the acceptable forms of degrees_east
.
Optionally, the longitude type may be indicated additionally by providing the standard_name
attribute with the value longitude
, and/or the axis
attribute with the value X
.
Coordinates of longitude with respect to a rotated pole should be given units of degrees
, not degrees_east
or equivalents, because applications which use the units to identify axes would have no means of distinguishing such an axis from real longitude, and might draw incorrect coastlines, for instance.
Variables representing dimensional height or depth axes must always explicitly include the units
attribute; there is no default value.
The direction of positive (i.e., the direction in which the coordinate values are increasing), whether up or down, cannot in all cases be inferred from the units. The direction of positive is useful for applications displaying the data. For this reason the attribute positive
as defined in the COARDS standard is required if the vertical axis units are not a valid unit of pressure (a determination which can be made using the udunits routine, utScan) — otherwise its inclusion is optional. The positive
attribute may have the value up
or down
(case insensitive). This attribute may be applied to either coordinate variables or auxiliary coordinate variables that contain vertical coordinate data.
For example, if an oceanographic netCDF file encodes the depth of the surface as 0 and the depth of 1000 meters as 1000 then the axis would use attributes as follows:
axis_name:units = "meters" ; axis_name:positive = "down" ;
If, on the other hand, the depth of 1000 meters were represented as -1000 then the value of the positive
attribute would have been up
. If the units
attribute value is a valid pressure unit the default value of the positive
attribute is down
.
A vertical coordinate will be identifiable by:
-
units of pressure; or
-
the presence of the
positive
attribute with a value ofup
ordown
(case insensitive).
Optionally, the vertical type may be indicated additionally by providing the standard_name
attribute with an appropriate value, and/or the axis
attribute with the value Z
. If both positive
and standard_name
are provided, it is recommended that they should be consistent. For instance, if a depth of 1000 metres is represented by -1000 and positive
is up
, it would be inconsistent to give the standard_name
as depth
, whose definition (vertical distance below the surface) implies positive down. If an application detects such an inconsistency, the user should be warned, and the positive
attribute should be used to determine the sign convention.
Recommendations: The positive
attribute should be consistent with the sign convention implied by the definition of the standard_name
, if both are provided.
The units
attribute for dimensional coordinates will be a string formatted as per the udunits.dat
file. The acceptable units for vertical (depth or height) coordinate variables are:
-
units of pressure as listed in the file
udunits.dat
. For vertical axes the most commonly used of these includebar
,millibar
,decibar
,atmosphere (atm)
,pascal (Pa)
, andhPa
. -
units of length as listed in the file udunits.dat. For vertical axes the most commonly used of these include
meter (metre, m)
, andkilometer (km)
. -
other units listed in the file udunits.dat that may under certain circumstances reference vertical position such as units of density or temperature.
Plural forms are also acceptable.
The units
attribute is not required for dimensionless coordinates. For backwards compatibility with COARDS we continue to allow the units
attribute to take one of the values: level
, layer
, or sigma_level
. These values are not recognized by the Udunits package, and are considered a deprecated feature in the CF standard.
In some cases dimensional vertical coordinates are a function of horizontal
location as well as parameters which depend on vertical location, and therefore
cannot be stored in the one-dimensional vertical coordinate variable, which is
in most of these cases is dimensionless. The standard_name
of the parametric
(usually dimensionless) vertical coordinate variable can be used to find the
definition of the associated computed (always dimensional) vertical coordinate
in [parametric-v-coord]. The definition provides a mapping between the
parametric vertical coordinate values and computed values that can positively
and uniquely indicate the location of the data. The formula_terms
attribute
can be used to associate terms in the definitions with variables in a netCDF
file, and the computed_standard_name
attribute can be used to supply the
standard_name
of the computed vertical coordinate values computed according to
the definition. To maintain backwards compatibility with COARDS the use of
these attributes is not required, but is strongly recommended. Some of the
definitions may be supplemented with information stored in the grid_mapping
variable about the datum used as a vertical reference (e.g. geoid, other
geopotential datum or reference ellipsoid; see
[grid-mappings-and-projections] and [appendix-grid-mappings]).
float lev(lev) ; lev:long_name = "sigma at layer midpoints" ; lev:positive = "down" ; lev:standard_name = "atmosphere_sigma_coordinate" ; lev:formula_terms = "sigma: lev ps: PS ptop: PTOP" ; lev:computed_standard_name = "air_pressure" ;
In this example the standard_name
value atmosphere_sigma_coordinate
identifies the following definition from [parametric-v-coord] which specifies how to compute pressure at gridpoint (n,k,j,i)
where j
and i
are horizontal indices, k
is a vertical index, and n
is a time index:
p(n,k,j,i) = ptop + sigma(k)*(ps(n,j,i)-ptop)
The formula_terms
attribute associates the variable lev
with the term sigma
, the variable PS
with the term ps
, and the variable PTOP
with the term ptop
. Thus the pressure at gridpoint (n,k,j,i)
would be calculated by
p(n,k,j,i) = PTOP + lev(k)*(PS(n,j,i)-PTOP)
The computed_standard_name
attribute indicates that the values in variable
p
would have a standard_name
of air_pressure
.
Variables representing time must always explicitly include the units
attribute; there is no default value. The units
attribute takes a string value formatted as per the recommendations in the Udunits package [UDUNITS] . The following excerpt from the Udunits documentation explains the time unit encoding by example:
The specification: seconds since 1992-10-8 15:15:42.5 -6:00 indicates seconds since October 8th, 1992 at 3 hours, 15 minutes and 42.5 seconds in the afternoon in the time zone which is six hours to the west of Coordinated Universal Time (i.e. Mountain Daylight Time). The time zone specification can also be written without a colon using one or two-digits (indicating hours) or three or four digits (indicating hours and minutes).
The acceptable units for time are listed in the udunits.dat
file. The most commonly used of these strings (and their abbreviations) includes day (d)
, hour (hr, h)
, minute (min)
and second (sec, s)
. Plural forms are also acceptable. The reference time string (appearing after the identifier since
) may include date alone; date and time; or date, time, and time zone. The reference time is required. A reference time in year 0 has a special meaning (see [climatological-statistics]).
Note: if the time zone is omitted the default is UTC, and if both time and time zone are omitted the default is 00:00:00 UTC.
We recommend that the unit year
be used with caution. The Udunits package defines a year
to be exactly 365.242198781 days (the interval between 2 successive passages of the sun through vernal equinox). It is not a calendar year. Udunits includes the following definitions for years: a common_year
is 365 days, a leap_year
is 366 days, a Julian_year
is 365.25 days, and a Gregorian_year
is 365.2425 days.
For similar reasons the unit month
, which is defined in udunits.dat
to be exactly year/12
, should also be used with caution.
double time(time) ; time:long_name = "time" ; time:units = "days since 1990-1-1 0:0:0" ;
A time coordinate is identifiable from its units string alone. The Udunits routines utScan()
and utIsTime()
can be used to make this determination.
Optionally, the time coordinate may be indicated additionally by providing the standard_name
attribute with an appropriate value, and/or the axis
attribute with the value T
.
In order to calculate a new date and time given a base date, base time and a time increment one must know what calendar to use. For this purpose we recommend that the calendar be specified by the attribute calendar
which is assigned to the time coordinate variable. The values currently defined for calendar
are:
gregorian
orstandard
-
Mixed Gregorian/Julian calendar as defined by Udunits. This is the default.
proleptic_gregorian
-
A Gregorian calendar extended to dates before 1582-10-15. That is, a year is a leap year if either (i) it is divisible by 4 but not by 100 or (ii) it is divisible by 400.
noleap
or365_day
-
Gregorian calendar without leap years, i.e., all years are 365 days long.
all_leap
or366_day
-
Gregorian calendar with every year being a leap year, i.e., all years are 366 days long.
360_day
-
All years are 360 days divided into 30 day months.
julian
-
Julian calendar.
none
-
No calendar.
The calendar
attribute may be set to none
in climate experiments that simulate a fixed time of year. The time of year is indicated by the date in the reference time of the units
attribute. The time coordinate that might apply in a perpetual July experiment are given in the following example.
variables: double time(time) ; time:long_name = "time" ; time:units = "days since 1-7-15 0:0:0" ; time:calendar = "none" ; data: time = 0., 1., 2., ...;
Here, all days simulate the conditions of 15th July, so it does not make sense to give them different dates. The time coordinates are interpreted as 0, 1, 2, etc. days since the start of the experiment.
If none of the calendars defined above applies (e.g., calendars appropriate to a different paleoclimate era), a non-standard calendar can be defined. The lengths of each month are explicitly defined with the month_lengths
attribute of the time axis:
month_lengths
-
A vector of size 12, specifying the number of days in the months from January to December (in a non-leap year).
If leap years are included, then two other attributes of the time axis should also be defined:
leap_year
-
An example of a leap year. It is assumed that all years that differ from this year by a multiple of four are also leap years. If this attribute is absent, it is assumed there are no leap years.
leap_month
-
A value in the range 1-12, specifying which month is lengthened by a day in leap years (1=January). If this attribute is not present, February (2) is assumed. This attribute is ignored if
leap_year
is not specified.
The calendar
attribute is not required when a non-standard calendar is being used. It is sufficient to define the calendar using the month_lengths
attribute, along with leap_year
, and leap_month
as appropriate. However, the calendar
attribute is allowed to take non-standard values and in that case defining the non-standard calendar using the appropriate attributes is required.
double time(time) ; time:long_name = "time" ; time:units = "days since 1-1-1 0:0:0" ; time:calendar = "126 kyr B.P." ; time:month_lengths = 34, 31, 32, 30, 29, 27, 28, 28, 28, 32, 32, 34 ;
The mixed Gregorian/Julian calendar used by Udunits is explained in the following excerpt from the udunits(3) man page:
The udunits(3) package uses a mixed Gregorian/Julian calen- dar system. Dates prior to 1582-10-15 are assumed to use the Julian calendar, which was introduced by Julius Caesar in 46 BCE and is based on a year that is exactly 365.25 days long. Dates on and after 1582-10-15 are assumed to use the Gregorian calendar, which was introduced on that date and is based on a year that is exactly 365.2425 days long. (A year is actually approximately 365.242198781 days long.) Seem- ingly strange behavior of the udunits(3) package can result if a user-given time interval includes the changeover date. For example, utCalendar() and utInvCalendar() can be used to show that 1582-10-15 *preceded* 1582-10-14 by 9 days.
Due to problems caused by the discontinuity in the default mixed Gregorian/Julian calendar, we strongly recommend that this calendar should only be used when the time coordinate does not cross the discontinuity. For time coordinates that do cross the discontinuity the proleptic_gregorian
calendar should be used instead.
The spatiotemporal coordinates described in sections 4.1-4.4 are continuous variables, and other geophysical quantities may likewise serve as continuous coordinate variables, for instance density, temperature or radiation wavelength. By contrast, for some purposes there is a need for an axis of a data variable which indicates either an ordered list or an unordered collection, and does not correspond to any continuous coordinate variable. Consequently such an axis may be called “discrete”. A discrete axis has a dimension but might not have a coordinate variable. Instead, there might be one or more auxiliary coordinate variables with this dimension (see preamble to section 5). Following sections define various applications of discrete axes, for instance section 6.1.1 “Geographical regions”, section 7.3.3 “Statistics applying to portions of cells”, section 9.3 “Representation of collections of features in data variables”.