-
Notifications
You must be signed in to change notification settings - Fork 74
/
render_video_interpolation.py
124 lines (99 loc) · 4.86 KB
/
render_video_interpolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import math
import os
from torchvision.utils import save_image
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import numpy as np
import skvideo.io
import curriculums
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('--seeds', nargs='+', default=[0, 1, 2])
parser.add_argument('--output_dir', type=str, default='vids')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--max_batch_size', type=int, default=2400000)
parser.add_argument('--depth_map', action='store_true')
parser.add_argument('--lock_view_dependence', action='store_true')
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--ray_step_multiplier', type=int, default=2)
parser.add_argument('--num_frames', type=int, default=36)
parser.add_argument('--curriculum', type=str, default='CelebA')
parser.add_argument('--trajectory', type=str, default='front')
parser.add_argument('--psi', type=float, default=0.7)
opt = parser.parse_args()
os.makedirs(opt.output_dir, exist_ok=True)
curriculum = getattr(curriculums, opt.curriculum)
curriculum['num_steps'] = curriculum[0]['num_steps'] * opt.ray_step_multiplier
curriculum['img_size'] = opt.image_size
curriculum['psi'] = opt.psi
curriculum['v_stddev'] = 0
curriculum['h_stddev'] = 0
curriculum['lock_view_dependence'] = opt.lock_view_dependence
curriculum['last_back'] = curriculum.get('eval_last_back', False)
curriculum['num_frames'] = opt.num_frames
curriculum['nerf_noise'] = 0
curriculum = {key: value for key, value in curriculum.items() if type(key) is str}
class FrequencyInterpolator:
def __init__(self, generator, z1, z2, psi=0.5):
avg_frequencies, avg_phase_shifts = generator.generate_avg_frequencies()
raw_frequencies1, raw_phase_shifts1 = generator.siren.mapping_network(z1)
self.truncated_frequencies1 = avg_frequencies + psi * (raw_frequencies1 - avg_frequencies)
self.truncated_phase_shifts1 = avg_phase_shifts + psi * (raw_phase_shifts1 - avg_phase_shifts)
raw_frequencies2, raw_phase_shifts2 = generator.siren.mapping_network(z2)
self.truncated_frequencies2 = avg_frequencies + psi * (raw_frequencies2 - avg_frequencies)
self.truncated_phase_shifts2 = avg_phase_shifts + psi * (raw_phase_shifts2 - avg_phase_shifts)
def forward(self, t):
frequencies = self.truncated_frequencies1 * (1-t) + self.truncated_frequencies2 * t
phase_shifts = self.truncated_phase_shifts1 * (1-t) + self.truncated_phase_shifts2 * t
return frequencies, phase_shifts
def tensor_to_PIL(img):
img = img.squeeze() * 0.5 + 0.5
return Image.fromarray(img.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy())
generator = torch.load(opt.path, map_location=torch.device(device))
ema_file = opt.path.split('generator')[0] + 'ema.pth'
ema = torch.load(ema_file)
ema.copy_to(generator.parameters())
generator.set_device(device)
generator.eval()
if opt.trajectory == 'front':
trajectory = []
for t in np.linspace(0, 1, curriculum['num_frames']):
pitch = 0.2 * np.cos(t * 2 * math.pi) + math.pi/2
yaw = 0.4 * np.sin(t * 2 * math.pi) + math.pi/2
fov = curriculum['fov'] + 5 + np.sin(t * 2 * math.pi) * 5
trajectory.append((t, pitch, yaw, fov))
elif opt.trajectory == 'orbit':
trajectory = []
for t in np.linspace(0, 1, curriculum['num_frames']):
pitch = 0.2 * np.cos(t * 2 * math.pi) + math.pi/4
yaw = t * 2 * math.pi
fov = curriculum['fov']
trajectory.append((t, pitch, yaw, fov))
output_name = f'interp.mp4'
writer = skvideo.io.FFmpegWriter(os.path.join(opt.output_dir, output_name), outputdict={'-pix_fmt': 'yuv420p', '-crf': '21'})
print(opt.seeds)
for i, seed in enumerate(opt.seeds):
frames = []
depths = []
torch.manual_seed(seed)
z_current = torch.randn(1, 256, device=device)
torch.manual_seed(opt.seeds[(i+1)%len(opt.seeds)])
z_next = torch.randn(1, 256, device=device)
frequencyInterpolator = FrequencyInterpolator(generator, z_current, z_next, psi=opt.psi)
with torch.no_grad():
for t, pitch, yaw, fov in tqdm(trajectory):
curriculum['h_mean'] = yaw# + 3.14/2
curriculum['v_mean'] = pitch# + 3.14/2
curriculum['fov'] = fov
curriculum['h_stddev'] = 0
curriculum['v_stddev'] = 0
frame, depth_map = generator.staged_forward_with_frequencies(*frequencyInterpolator.forward(t), max_batch_size=opt.max_batch_size, depth_map=opt.depth_map, **curriculum)
# frame, depth_map = generator.staged_forward(z, max_batch_size=opt.max_batch_size, depth_map=opt.depth_map, **curriculum)
frames.append(tensor_to_PIL(frame))
for frame in frames:
writer.writeFrame(np.array(frame))
writer.close()