-
Notifications
You must be signed in to change notification settings - Fork 85
/
aspect.py
262 lines (223 loc) · 8.68 KB
/
aspect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from functools import partial
from math import atan2
from typing import Optional
import dask.array as da
import numpy as np
import xarray as xr
from numba import cuda
from xrspatial.utils import ArrayTypeFunctionMapping, cuda_args, ngjit, not_implemented_func
# 3rd-party
try:
import cupy
except ImportError:
class cupy(object):
ndarray = False
RADIAN = 180 / np.pi
@ngjit
def _run_numpy(data: np.ndarray):
data = data.astype(np.float32)
out = np.zeros_like(data, dtype=np.float32)
out[:] = np.nan
rows, cols = data.shape
for y in range(1, rows-1):
for x in range(1, cols-1):
a = data[y-1, x-1]
b = data[y-1, x]
c = data[y-1, x+1]
d = data[y, x-1]
f = data[y, x+1]
g = data[y+1, x-1]
h = data[y+1, x]
i = data[y+1, x+1]
dz_dx = ((c + 2 * f + i) - (a + 2 * d + g)) / 8
dz_dy = ((g + 2 * h + i) - (a + 2 * b + c)) / 8
if dz_dx == 0 and dz_dy == 0:
# flat surface, slope = 0, thus invalid aspect
out[y, x] = -1.
else:
_aspect = np.arctan2(dz_dy, -dz_dx) * RADIAN
# convert to compass direction values (0-360 degrees)
if _aspect < 0:
out[y, x] = 90.0 - _aspect
elif _aspect > 90.0:
out[y, x] = 360.0 - _aspect + 90.0
else:
out[y, x] = 90.0 - _aspect
return out
@cuda.jit(device=True)
def _gpu(arr):
a = arr[0, 0]
b = arr[0, 1]
c = arr[0, 2]
d = arr[1, 0]
f = arr[1, 2]
g = arr[2, 0]
h = arr[2, 1]
i = arr[2, 2]
dz_dx = ((c + 2 * f + i) - (a + 2 * d + g)) / 8
dz_dy = ((g + 2 * h + i) - (a + 2 * b + c)) / 8
if dz_dx == 0 and dz_dy == 0:
# flat surface, slope = 0, thus invalid aspect
_aspect = -1
else:
_aspect = atan2(dz_dy, -dz_dx) * 57.29578
# convert to compass direction values (0-360 degrees)
if _aspect < 0:
_aspect = 90 - _aspect
elif _aspect > 90:
_aspect = 360 - _aspect + 90
else:
_aspect = 90 - _aspect
if _aspect > 359.999: # lame float equality check...
return 0
else:
return _aspect
@cuda.jit
def _run_gpu(arr, out):
i, j = cuda.grid(2)
di = 1
dj = 1
if (i-di >= 0 and
i+di < out.shape[0] and
j-dj >= 0 and
j+dj < out.shape[1]):
out[i, j] = _gpu(arr[i-di:i+di+1, j-dj:j+dj+1])
def _run_cupy(data: cupy.ndarray) -> cupy.ndarray:
data = data.astype(cupy.float32)
griddim, blockdim = cuda_args(data.shape)
out = cupy.empty(data.shape, dtype='f4')
out[:] = cupy.nan
_run_gpu[griddim, blockdim](data, out)
return out
def _run_dask_numpy(data: da.Array) -> da.Array:
data = data.astype(np.float32)
_func = partial(_run_numpy)
out = data.map_overlap(_func,
depth=(1, 1),
boundary=np.nan,
meta=np.array(()))
return out
def aspect(agg: xr.DataArray,
name: Optional[str] = 'aspect') -> xr.DataArray:
"""
Calculates the aspect value of an elevation aggregate.
Calculates, for all cells in the array, the downward slope direction
of each cell based on the elevation of its neighbors in a 3x3 grid.
The value is measured clockwise in degrees with 0 (due north), and 360
(again due north). Values along the edges are not calculated.
Direction of the aspect can be determined by its value:
From 0 to 22.5: North
From 22.5 to 67.5: Northeast
From 67.5 to 112.5: East
From 112.5 to 157.5: Southeast
From 157.5 to 202.5: South
From 202.5 to 247.5: West
From 247.5 to 292.5: Northwest
From 337.5 to 360: North
Note that values of -1 denote flat areas.
Parameters
----------
agg : xarray.DataArray
2D NumPy, CuPy, or Dask with NumPy-backed xarray DataArray
of elevation values.
name : str, default='aspect'
Name of ouput DataArray.
Returns
-------
aspect_agg : xarray.DataArray of the same type as `agg`
2D aggregate array of calculated aspect values.
All other input attributes are preserved.
References
----------
- arcgis: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-aspect-works.htm#ESRI_SECTION1_4198691F8852475A9F4BC71246579FAA # noqa
Examples
--------
Aspect works with NumPy backed xarray DataArray
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> from xrspatial import aspect
>>> data = np.array([
[1, 1, 1, 1, 1],
[1, 1, 1, 2, 0],
[1, 1, 1, 0, 0],
[4, 4, 9, 2, 4],
[1, 5, 0, 1, 4],
[1, 5, 0, 5, 5]
], dtype=np.float32)
>>> raster = xr.DataArray(data, dims=['y', 'x'], name='raster')
>>> print(raster)
<xarray.DataArray 'raster' (y: 6, x: 5)>
array([[1., 1., 1., 1., 1.],
[1., 1., 1., 2., 0.],
[1., 1., 1., 0., 0.],
[4., 4., 9., 2., 4.],
[1., 5., 0., 1., 4.],
[1., 5., 0., 5., 5.]])
Dimensions without coordinates: y, x
>>> aspect_agg = aspect(raster)
>>> print(aspect_agg)
<xarray.DataArray 'aspect' (y: 6, x: 5)>
array([[ nan, nan , nan , nan , nan],
[ nan, -1. , 225. , 135. , nan],
[ nan, 343.61045967, 8.97262661, 33.69006753, nan],
[ nan, 307.87498365, 71.56505118, 54.46232221, nan],
[ nan, 191.30993247, 144.46232221, 255.96375653, nan],
[ nan, nan , nan , nan , nan]])
Dimensions without coordinates: y, x
Aspect works with Dask with NumPy backed xarray DataArray
.. sourcecode:: python
>>> import dask.array as da
>>> data_da = da.from_array(data, chunks=(3, 3))
>>> raster_da = xr.DataArray(data_da, dims=['y', 'x'], name='raster_da')
>>> print(raster_da)
<xarray.DataArray 'raster' (y: 6, x: 5)>
dask.array<array, shape=(6, 5), dtype=int64, chunksize=(3, 3), chunktype=numpy.ndarray>
Dimensions without coordinates: y, x
>>> aspect_da = aspect(raster_da)
>>> print(aspect_da)
<xarray.DataArray 'aspect' (y: 6, x: 5)>
dask.array<_trim, shape=(6, 5), dtype=float32, chunksize=(3, 3), chunktype=numpy.ndarray>
Dimensions without coordinates: y, x
>>> print(aspect_da.compute()) # compute the results
<xarray.DataArray 'aspect' (y: 6, x: 5)>
array([[ nan, nan , nan , nan , nan],
[ nan, -1. , 225. , 135. , nan],
[ nan, 343.61045967, 8.97262661, 33.69006753, nan],
[ nan, 307.87498365, 71.56505118, 54.46232221, nan],
[ nan, 191.30993247, 144.46232221, 255.96375653, nan],
[ nan, nan , nan , nan , nan]])
Dimensions without coordinates: y, x
Aspect works with CuPy backed xarray DataArray.
Make sure you have a GPU and CuPy installed to run this example.
.. sourcecode:: python
>>> import cupy
>>> data_cupy = cupy.asarray(data)
>>> raster_cupy = xr.DataArray(data_cupy, dims=['y', 'x'])
>>> aspect_cupy = aspect(raster_cupy)
>>> print(type(aspect_cupy.data))
<class 'cupy.core.core.ndarray'>
>>> print(aspect_cupy)
<xarray.DataArray 'aspect' (y: 6, x: 5)>
array([[ nan, nan, nan, nan, nan],
[ nan, -1., 225., 135., nan],
[ nan, 343.61047, 8.972626, 33.690067, nan],
[ nan, 307.87497, 71.56505 , 54.462322, nan],
[ nan, 191.30994, 144.46233 , 255.96376, nan],
[ nan, nan, nan, nan, nan]],
dtype=float32)
Dimensions without coordinates: y, x
"""
mapper = ArrayTypeFunctionMapping(
numpy_func=_run_numpy,
dask_func=_run_dask_numpy,
cupy_func=_run_cupy,
dask_cupy_func=lambda *args: not_implemented_func(
*args, messages='aspect() does not support dask with cupy backed DataArray') # noqa
)
out = mapper(agg)(agg.data)
return xr.DataArray(out,
name=name,
coords=agg.coords,
dims=agg.dims,
attrs=agg.attrs)