-
Notifications
You must be signed in to change notification settings - Fork 2
/
render_ms.py
167 lines (148 loc) · 5.27 KB
/
render_ms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
from argparse import ArgumentParser
from typing import Dict, List, Tuple
import torch
import torchvision
from lpips import LPIPS
from tqdm import tqdm
from arguments import GroupParams, ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel, render
from scene import Camera, Scene
from utils.general_utils import safe_state
from utils.image_utils import psnr as get_psnr
from utils.loss_utils import ssim as get_ssim
lpips_fn = LPIPS(net="vgg").cuda()
def render_set(
model_path: str,
name: str,
iteration: int,
views: List[Camera],
gaussians: GaussianModel,
pipeline: GroupParams,
background: torch.Tensor,
interval: int = 5,
lpips: bool = False,
vis: bool = False,
filter3d: bool = False,
) -> None:
render_path = os.path.join(model_path, name, f"ours_{iteration}", "renders")
os.makedirs(render_path, exist_ok=True)
psnr_avg = 0.0
ssim_avg = 0.0
lpips_avg = 0.0
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
# for idx, view in enumerate(views):
rendering = render(view, gaussians, pipeline, background, filter3d=filter3d)["render"]
gt = view.original_image[0:3, :, :]
if vis and idx % interval == 0:
img = torch.cat([rendering, gt], dim=-1)
torchvision.utils.save_image(img, os.path.join(render_path, f"{idx:05d}" + ".png"))
psnr_avg += get_psnr(gt, rendering).mean().double()
ssim_avg += get_ssim(gt, rendering).mean().double()
if lpips:
lpips_avg += lpips_fn(gt, rendering).mean().double()
psnr = psnr_avg / len(views)
ssim = ssim_avg / len(views)
lpips = lpips_avg / len(views)
content = f"psnr_avg: {psnr:.4f}; ssim_avg: {ssim:.4f}; lpips_avg: {lpips:.5f}"
print(content)
with open(os.path.join(model_path, name, f"ours_{iteration}", "results.txt"), "w") as fp:
fp.write(content)
@torch.no_grad()
def launch(
dataset: ModelParams,
pipeline: PipelineParams,
iteration: int,
skip_train: bool,
skip_test: bool,
lpips: bool = False,
vis: bool = False,
filter3d: bool = False,
interval: int = 5,
) -> None:
gaussians = GaussianModel(sh_degree=dataset.sh_degree)
scales = [1.0, 2.0, 4.0, 8.0]
scene = Scene(
args=dataset,
load_iteration=iteration,
gaussians=gaussians,
shuffle=False,
resolution_scales=scales,
)
# gaussians.restore(model_params)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
for scale in scales:
print(f"eval train scale-{scale}")
trainCameras = scene.getTrainCameras(scale).copy()
render_set(
model_path=dataset.model_path,
name=f"train_{scale}",
iteration=iteration,
views=trainCameras,
gaussians=gaussians,
pipeline=pipeline,
background=background,
lpips=lpips,
vis=vis,
filter3d=filter3d,
interval=interval,
)
if not skip_test:
for scale in scales:
print(f"eval test scale-{scale}")
testCameras = scene.getTestCameras(scale).copy()
render_set(
model_path=dataset.model_path,
name=f"test_{scale}",
iteration=iteration,
views=testCameras,
gaussians=gaussians,
pipeline=pipeline,
background=background,
lpips=lpips,
vis=vis,
filter3d=filter3d,
interval=interval,
)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--interval", default=5, type=int)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--checkpoint", type=str, default=None)
parser.add_argument("--ndown", type=int, default=-1)
parser.add_argument("--lpips", action="store_true")
parser.add_argument("--vis", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--filter3d", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
launch(
dataset=model.extract(args),
pipeline=pipeline.extract(args),
iteration=args.iteration,
skip_train=args.skip_train,
skip_test=args.skip_test,
lpips=args.lpips,
vis=args.vis,
filter3d=args.filter3d,
interval=args.interval,
)