forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hamilton.py
106 lines (87 loc) · 2.48 KB
/
hamilton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
class Graph():
def __init__(self, vertices):
self.graph = [[0 for column in range(vertices)]
for row in range(vertices)]
self.V = vertices
def isSafe(self, v, pos, path):
# Check if current vertex and last vertex
# in path are adjacent
if self.graph[path[pos - 1]][v] == 0:
return False
# Check if current vertex not already in path
for vertex in path:
if vertex == v:
return False
return True
def hamCycleUtil(self, path, pos):
# base case: if all vertices are
# included in the path
if pos == self.V:
# Last vertex must be adjacent to the
# first vertex in path to make a cyle
if self.graph[path[pos - 1]][path[0]] == 1:
return True
else:
return False
for v in range(1, self.V):
if self.isSafe(v, pos, path) is True:
path[pos] = v
if self.hamCycleUtil(path, pos + 1) is True:
return True
# Remove current vertex if it doesn't
# lead to a solution
path[pos] = -1
return False
def hamCycle(self):
path = [-1] * self.V
''' Let us put vertex 0 as the first vertex
in the path. If there is a Hamiltonian Cycle,
then the path can be started from any point
of the cycle as the graph is undirected '''
path[0] = 0
if self.hamCycleUtil(path, 1) is False:
print("Solution does not exist\n")
return False
self.printSolution(path)
return True
def printSolution(self, path):
print("Solution Exists: Following is one Hamiltonian Cycle")
for vertex in path:
print(vertex)
print(path[0], "\n")
'''
Let us create the following graph
(0)--(1)--(2)
| / \ |
| / \ |
| / \ |
(3)-------(4)
'''
g1 = Graph(5)
g1.graph = [
[0, 1, 0, 1, 0],
[1, 0, 1, 1, 1],
[0, 1, 0, 0, 1],
[1, 1, 0, 0, 1],
[0, 1, 1, 1, 0],
]
# Print the solution
g1.hamCycle()
'''
Let us create the following graph
(0)--(1)--(2)
| / \ |
| / \ |
| / \ |
(3) (4)
'''
g2 = Graph(5)
g2.graph = [
[0, 1, 0, 1, 0],
[1, 0, 1, 1, 1],
[0, 1, 0, 0, 1],
[1, 1, 0, 0, 0],
[0, 1, 1, 0, 0],
]
# Print the solution
g2.hamCycle()