forked from z-bingo/kernel-prediction-networks-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
KPN-sep.py
316 lines (285 loc) · 13 KB
/
KPN-sep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from torchsummary import summary
import torchvision.models as models
# KPN基本网路单元
class Basic(nn.Module):
def __init__(self, in_ch, out_ch, g=16, channel_att=False, spatial_att=False):
super(Basic, self).__init__()
self.channel_att = channel_att
self.spatial_att = spatial_att
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.Conv2d(in_channels=out_ch, out_channels=out_ch, kernel_size=3, stride=1, padding=1, groups=1, bias=True),
nn.BatchNorm2d(out_ch),
nn.ReLU(),
nn.Conv2d(in_channels=out_ch, out_channels=out_ch, kernel_size=3, stride=1, padding=1, groups=1, bias=True),
nn.BatchNorm2d(out_ch),
nn.ReLU()
)
if channel_att:
self.att_c = nn.Sequential(
nn.Conv2d(2*out_ch, out_ch//g, 1, 1, 0),
nn.BatchNorm2d(out_ch//g),
nn.ReLU(),
nn.Conv2d(out_ch//g, out_ch, 1, 1, 0),
nn.BatchNorm2d(out_ch),
nn.Sigmoid()
)
if spatial_att:
self.att_s = nn.Sequential(
nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
def forward(self, data):
"""
Forward function.
:param data:
:return: tensor
"""
fm = self.conv1(data)
if self.channel_att:
# fm_pool = F.adaptive_avg_pool2d(fm, (1, 1)) + F.adaptive_max_pool2d(fm, (1, 1))
fm_pool = torch.cat([F.adaptive_avg_pool2d(fm, (1, 1)), F.adaptive_max_pool2d(fm, (1, 1))], dim=1)
att = self.att_c(fm_pool)
fm = fm * att
if self.spatial_att:
fm_pool = torch.cat([torch.mean(fm, dim=1, keepdim=True), torch.max(fm, dim=1, keepdim=True)[0]], dim=1)
att = self.att_s(fm_pool)
fm = fm * att
return fm
class KPN(nn.Module):
def __init__(self, color=True, in_channel=100,burst_length=8, blind_est=False, kernel_size=[5], sep_conv=False,
channel_att=False, spatial_att=False, upMode='bilinear', core_bias=False):
super(KPN, self).__init__()
self.upMode = upMode
self.burst_length = burst_length
self.core_bias = core_bias
self.color_channel = 3 if color else 1
# in_channel = in_channel
#TODO: for now exclude the additional channel for the std estimation
in_channel = (3 if color else 1) * (burst_length if blind_est else burst_length)
out_channel = (3 if color else 1) * (2 * sum(kernel_size) if sep_conv else np.sum(np.array(kernel_size) ** 2)) * burst_length
if core_bias:
out_channel += (3 if color else 1) * burst_length
# separate motion elimination and denoising
out_channel = out_channel * 2
self.out_channel = out_channel
# 各个卷积层定义
# 2~5层都是均值池化+3层卷积
self.conv1 = Basic(in_channel, 64, channel_att=False, spatial_att=False)
self.conv2 = Basic(64, 128, channel_att=False, spatial_att=False)
self.conv3 = Basic(128, 256, channel_att=False, spatial_att=False)
self.conv4 = Basic(256, 512, channel_att=False, spatial_att=False)
self.conv5 = Basic(512, 512, channel_att=False, spatial_att=False)
# 6~8层要先上采样再卷积
self.conv6 = Basic(512+512, 512, channel_att=channel_att, spatial_att=spatial_att)
self.conv7 = Basic(256+512, 256, channel_att=channel_att, spatial_att=spatial_att)
self.conv8 = Basic(256+128, out_channel, channel_att=channel_att, spatial_att=spatial_att)
self.outc = nn.Conv2d(out_channel, out_channel, 1, 1, 0)
self.kernel_pred = KernelConv(kernel_size, sep_conv, self.core_bias)
self.kernel_pred1 = KernelConv(kernel_size, sep_conv, self.core_bias)
self.apply(self._init_weights)
@staticmethod
def _init_weights(m):
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight.data)
nn.init.constant_(m.bias.data, 0.0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
nn.init.constant_(m.bias.data, 0.0)
# 前向传播函数
def forward(self, data_with_est, data, white_level=1.0):
"""
forward and obtain pred image directly
:param data_with_est: if not blind estimation, it is same as data
:param data:
:return: pred_img_i and img_pred
"""
conv1 = self.conv1(data_with_est)
conv2 = self.conv2(F.avg_pool2d(conv1, kernel_size=2, stride=2))
conv3 = self.conv3(F.avg_pool2d(conv2, kernel_size=2, stride=2))
conv4 = self.conv4(F.avg_pool2d(conv3, kernel_size=2, stride=2))
conv5 = self.conv5(F.avg_pool2d(conv4, kernel_size=2, stride=2))
# 开始上采样 同时要进行skip connection
conv6 = self.conv6(torch.cat([conv4, F.interpolate(conv5, scale_factor=2, mode=self.upMode)], dim=1))
conv7 = self.conv7(torch.cat([conv3, F.interpolate(conv6, scale_factor=2, mode=self.upMode)], dim=1))
conv8 = self.conv8(torch.cat([conv2, F.interpolate(conv7, scale_factor=2, mode=self.upMode)], dim=1))
# return channel K*K*N
core = self.outc(F.interpolate(conv8, scale_factor=2, mode=self.upMode))
output_motion_eliminated = self.kernel_pred(data, core[:, :self.out_channel//2, ...], white_level)
# output_denoised = self.kernel_pred1(output_motion_eliminated, core[:, self.out_channel//2:, ...], white_level)
# return self.kernel_pred(data, core, white_level)
return output_motion_eliminated, torch.mean(output_motion_eliminated, dim=1, keepdim=False)
# return torch.cat([output_motion_eliminated, output_denoised], axis=1) , torch.mean(output_denoised, dim=1, keepdim=False)
class KernelConv(nn.Module):
"""
the class of computing prediction
"""
def __init__(self, kernel_size=[5], sep_conv=False, core_bias=False):
super(KernelConv, self).__init__()
self.kernel_size = sorted(kernel_size)
self.sep_conv = sep_conv
self.core_bias = core_bias
def _sep_conv_core(self, core, batch_size, N, color, height, width):
"""
convert the sep_conv core to conv2d core
2p --> p^2
:param core: shape: batch*(N*2*K)*height*width
:return:
"""
kernel_total = sum(self.kernel_size)
core = core.view(batch_size, N, -1, color, height, width)
if not self.core_bias:
core_1, core_2 = torch.split(core, kernel_total, dim=2)
else:
core_1, core_2, core_3 = torch.split(core, kernel_total, dim=2)
# output core
core_out = {}
cur = 0
for K in self.kernel_size:
t1 = core_1[:, :, cur:cur + K, ...].view(batch_size, N, K, 1, color, height, width)
t2 = core_2[:, :, cur:cur + K, ...].view(batch_size, N, 1, K, color, height, width)
core_out[K] = torch.einsum('ijklcno,ijlmcno->ijkmcno', [t1, t2]).view(batch_size, N, K * K, color, height, width)
cur += K
# it is a dict
return core_out, None if not self.core_bias else core_3.squeeze()
def _convert_dict(self, core, batch_size, N, color, height, width):
"""
make sure the core to be a dict, generally, only one kind of kernel size is suitable for the func.
:param core: shape: batch_size*(N*K*K)*height*width
:return: core_out, a dict
"""
core_out = {}
for K in self.kernel_size:
core = core.view(batch_size, N, -1, color, height, width)
core_out[K] = core[:, :, 0:K**2, ...]
bias = None if not self.core_bias else core[:, :, -1, ...]
return core_out, bias
def forward(self, frames, core, white_level=1.0):
"""
compute the pred image according to core and frames
:param frames: [batch_size, N, 3, height, width]
:param core: [batch_size, N, dict(kernel), 3, height, width]
:return:
"""
if len(frames.size()) == 5:
batch_size, N, color, height, width = frames.size()
else:
batch_size, N, height, width = frames.size()
color = 1
frames = frames.view(batch_size, N, color, height, width)
if self.sep_conv:
core, bias = self._sep_conv_core(core, batch_size, N, color, height, width)
else:
core, bias = self._convert_dict(core, batch_size, N, color, height, width)
img_stack = []
pred_img = []
kernel = self.kernel_size[::-1]
for index, K in enumerate(kernel):
if len(img_stack)==0:
frame_pad = F.pad(frames, [K // 2, K // 2, K // 2, K // 2])
for i in range(K):
for j in range(K):
img_stack.append(frame_pad[..., i:i + height, j:j + width])
img_stack = torch.stack(img_stack, dim=2)
else:
k_diff = (kernel[index - 1] - kernel[index]) // 2
img_stack = img_stack.reshape(batch_size, N , kernel[index - 1], kernel[index - 1], color, height, width)[:, :, k_diff:-k_diff, k_diff:-k_diff, ...].reshape(batch_size, N, kernel[index]**2, color,height,width )
pred_img.append(torch.sum(
core[K].mul(img_stack), dim=2, keepdim=False
))
pred_img = torch.stack(pred_img, dim=0)
# print('pred_stack:', pred_img.size())
pred_img_i = torch.mean(pred_img, dim=0, keepdim=False).squeeze()
# if bias is permitted
if self.core_bias:
if bias is None:
raise ValueError('The bias should not be None.')
pred_img_i += bias
# print('white_level', white_level.size())
pred_img_i = pred_img_i / white_level
# pred_img = torch.mean(pred_img_i, dim=1, keepdim=False)
# return pred_img_i, pred_img
return pred_img_i
class LossFunc(nn.Module):
"""
loss function of KPN
"""
def __init__(self, coeff_basic=1.0, coeff_anneal=1.0, gradient_L1=True, alpha=0.9998, beta=100):
super(LossFunc, self).__init__()
self.coeff_basic = coeff_basic
self.coeff_anneal = coeff_anneal
self.loss_basic = LossBasic(gradient_L1)
self.loss_anneal = LossAnneal(alpha, beta)
def forward(self, pred_img_i, pred_img, ground_truth, global_step):
"""
forward function of loss_func
:param frames: frame_1 ~ frame_N, shape: [batch, N, 3, height, width]
:param core: a dict coverted by ......
:param ground_truth: shape [batch, 3, height, width]
:param global_step: int
:return: loss
"""
return self.coeff_basic * self.loss_basic(pred_img, ground_truth), self.coeff_anneal * self.loss_anneal(global_step, pred_img_i, ground_truth)
class LossBasic(nn.Module):
"""
Basic loss function.
"""
def __init__(self, gradient_L1=True):
super(LossBasic, self).__init__()
self.l1_loss = nn.L1Loss()
self.l2_loss = nn.MSELoss()
self.gradient = TensorGradient(gradient_L1)
def forward(self, pred, ground_truth):
return self.l2_loss(pred, ground_truth) + \
self.l1_loss(self.gradient(pred), self.gradient(ground_truth))
class LossAnneal(nn.Module):
"""
anneal loss function
"""
def __init__(self, alpha=0.9998, beta=100):
super(LossAnneal, self).__init__()
self.global_step = 0
self.loss_func = LossBasic(gradient_L1=True)
self.alpha = alpha
self.beta = beta
def forward(self, global_step, pred_i, ground_truth):
"""
:param global_step: int
:param pred_i: [batch_size, N, 3, height, width]
:param ground_truth: [batch_size, 3, height, width]
:return:
"""
loss = 0
for i in range(pred_i.size(1)):
loss += self.loss_func(pred_i[:, i, ...], ground_truth)
loss /= pred_i.size(1)
return self.beta * self.alpha ** global_step * loss
class TensorGradient(nn.Module):
"""
the gradient of tensor
"""
def __init__(self, L1=True):
super(TensorGradient, self).__init__()
self.L1 = L1
def forward(self, img):
w, h = img.size(-2), img.size(-1)
l = F.pad(img, [1, 0, 0, 0])
r = F.pad(img, [0, 1, 0, 0])
u = F.pad(img, [0, 0, 1, 0])
d = F.pad(img, [0, 0, 0, 1])
if self.L1:
return torch.abs((l - r)[..., 0:w, 0:h]) + torch.abs((u - d)[..., 0:w, 0:h])
else:
return torch.sqrt(
torch.pow((l - r)[..., 0:w, 0:h], 2) + torch.pow((u - d)[..., 0:w, 0:h], 2)
)
if __name__ == '__main__':
kpn = KPN(6, 5*5*6, True, True).cuda()
print(summary(kpn, (6, 224, 224), batch_size=4))