forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
show_response.py
94 lines (71 loc) · 2.37 KB
/
show_response.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class FilterType(Protocol):
def process(self, sample: float) -> float:
"""
Calculate y[n]
>>> issubclass(FilterType, Protocol)
True
"""
return 0.0
def get_bounds(
fft_results: np.ndarray, samplerate: int
) -> tuple[int | float, int | float]:
"""
Get bounds for printing fft results
>>> import numpy
>>> array = numpy.linspace(-20.0, 20.0, 1000)
>>> get_bounds(array, 1000)
(-20, 20)
"""
lowest = min([-20, np.min(fft_results[1 : samplerate // 2 - 1])])
highest = max([20, np.max(fft_results[1 : samplerate // 2 - 1])])
return lowest, highest
def show_frequency_response(filter: FilterType, samplerate: int) -> None:
"""
Show frequency response of a filter
>>> from audio_filters.iir_filter import IIRFilter
>>> filt = IIRFilter(4)
>>> show_frequency_response(filt, 48000)
"""
size = 512
inputs = [1] + [0] * (size - 1)
outputs = [filter.process(item) for item in inputs]
filler = [0] * (samplerate - size) # zero-padding
outputs += filler
fft_out = np.abs(np.fft.fft(outputs))
fft_db = 20 * np.log10(fft_out)
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24, samplerate / 2 - 1)
plt.xlabel("Frequency (Hz)")
plt.xscale("log")
# Display within reasonable bounds
bounds = get_bounds(fft_db, samplerate)
plt.ylim(max([-80, bounds[0]]), min([80, bounds[1]]))
plt.ylabel("Gain (dB)")
plt.plot(fft_db)
plt.show()
def show_phase_response(filter: FilterType, samplerate: int) -> None:
"""
Show phase response of a filter
>>> from audio_filters.iir_filter import IIRFilter
>>> filt = IIRFilter(4)
>>> show_phase_response(filt, 48000)
"""
size = 512
inputs = [1] + [0] * (size - 1)
outputs = [filter.process(item) for item in inputs]
filler = [0] * (samplerate - size) # zero-padding
outputs += filler
fft_out = np.angle(np.fft.fft(outputs))
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24, samplerate / 2 - 1)
plt.xlabel("Frequency (Hz)")
plt.xscale("log")
plt.ylim(-2 * pi, 2 * pi)
plt.ylabel("Phase shift (Radians)")
plt.plot(np.unwrap(fft_out, -2 * pi))
plt.show()