-
Notifications
You must be signed in to change notification settings - Fork 0
/
006_inter_opport.qmd
692 lines (558 loc) · 28.4 KB
/
006_inter_opport.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
---
title: "Analyzing international opportunities"
author: "Luis Francisco Gomez Lopez"
date: 2023-07-11
format:
beamer:
colortheme: dolphin
fonttheme: structurebold
theme: AnnArbor
link-citations: true
linkcolor: blue
include-in-header:
- text: |
\usepackage{booktabs}
\usepackage{longtable}
\usepackage{array}
\usepackage{multirow}
\usepackage{wrapfig}
\usepackage{float}
\usepackage{colortbl}
\usepackage{pdflscape}
\usepackage{tabu}
\usepackage{threeparttable}
\usepackage{threeparttablex}
\usepackage[normalem]{ulem}
\usepackage{makecell}
\usepackage{xcolor}
\usepackage{fontawesome5}
bibliography: econ_glob_faedis.bib
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(echo = FALSE,
warning = FALSE,
message = FALSE,
fig.align = "center")
```
```{r libraries}
library(tidyverse)
library(tidyquant)
library(wbstats)
library(DiagrammeR)
```
# Contents
- Please Read Me
- Purpose
- National business environment
- Market-potential analysis
- Secondary market research
- Acknowledgments
- References
# Please Read Me
- Check the message __Welcome greeting__ published in the News Bulletin Board.
- Dear student please edit your profile uploading a photo where your face is clearly visible.
- The purpose of the virtual meetings is to answer questions and not to make a summary of the study material.
- This presentation is based on [@wild_international_2020, Chapter 12]
# Purpose
Understand the importance of analyzing the characteristics of the national economies to select a market and point out how to do it using data
# National business environment
\definecolor{tq_red}{RGB}{227, 26, 28}
- Data
+ Doing Business - World Bank: [https://www.doingbusiness.org/](https://www.doingbusiness.org/)
+ Doing Business 2020: [@world_bank_doing_2020]
- Methodology
+ https://www.doingbusiness.org/ > Methodology
+ Knowing your data
+ __Doesn't__ measure all aspects of the business environment that matter to companies or investors
+ Only 10 topics with the specific aim on measuring business regulations are cover
- **\textcolor{tq_red}{Warning:} Investigation of Data Irregularities in
Doing Business 2018 and Doing Business 2020** [@c_machen_investigation_2021]
# National business environment
\definecolor{tq_blue}{RGB}{44, 62, 80}
\definecolor{tq_steel_blue}{RGB}{166, 206, 227}
\definecolor{tq_navy_blue}{RGB}{31, 120, 180}
- What is measure in _Doing Business_ 2020? [@world_bank_doing_2020, p 3]
+ Opening a business
+ \textcolor{tq_blue}{\faIcon{store-alt}} Starting a business
+ Getting a location
+ \textcolor{tq_steel_blue}{\faIcon{tools}} Dealing with construction permits
+ \textcolor{tq_steel_blue}{\faIcon{bolt}} Getting electricity
+ \textcolor{tq_steel_blue}{\faIcon{city}} Registering property
+ Accessing finance
+ \textcolor{tq_navy_blue}{\faIcon[regular]{credit-card}} Getting credit
+ \textcolor{tq_navy_blue}{\faIcon{user-shield}} Protecting minority investors
# National business environment
\definecolor{tq_light_green}{RGB}{178, 223, 138}
\definecolor{tq_orange}{RGB}{255, 127, 0}
- What is measure in _Doing Business_ 2020? [@world_bank_doing_2020, p 3]
+ Dealing withday-to-day operations
+ \textcolor{tq_light_green}{\faIcon{file-invoice-dollar}} Paying taxes
+ \textcolor{tq_light_green}{\faIcon{truck-moving}} Trading across borders
+ Operating in a secure business environment
+ \textcolor{tq_orange}{\faIcon{file-signature}} Enforcing contracts
+ \textcolor{tq_orange}{\faIcon{gavel}} Resolving insolvency
# National business environment
- Some data about _Doing Business_ 2020 which corresponds to year 2019
```{r, out.width="75%"}
# By regions
# More information:
# - How does the World Bank classify countries?
# - World Bank Country and Lending Groups
wb_by_region_iso3c <- wb_regions() %>%
drop_na() %>%
pull(iso3c)
# Data Doing Business 2020: year 2019
doing_business_score_2019 <- wb_data(indicator = c("IC.BUS.DFRN.XQ", "IC.BUS.EASE.XQ"),
country = "all",
start_date = 2019,
end_date = 2019)
# Data World Bank Regions
region_doing_business_score_2019 <- doing_business_score_2019 %>%
filter(iso3c %in% wb_by_region_iso3c) %>%
mutate(text_score = as.character(IC.BUS.DFRN.XQ %>% round(digits = 2)))
# Plot World Bank Regions
region_doing_business_score_2019 %>%
ggplot(aes(x = IC.BUS.DFRN.XQ, y = fct_reorder(country, IC.BUS.DFRN.XQ))) +
geom_point(size = 4,
color = palette_light()[[1]]) +
geom_label(aes(label = text_score),
fill = palette_light()[[2]],
hjust = -0.5) +
geom_segment(aes(xend = 0, yend = country)) +
xlim(0, 90) +
labs(x = "",
y = "",
title = "Ease of doing business score by World Bank regions: year 2019",
subtitle = str_glue("0 = lowest performance to 100 = best performance
Doing Business code: IC.BUS.DFRN.XQ"),
# You need to update it manually
caption = str_glue("Source: Doing Business - World Bank
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
legend.position = "bottom",
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())
```
# National business environment
- Some data about _Doing Business_ 2020 which corresponds to year 2019
```{r, out.width="75%"}
# Data World Bank countries
top_country_doing_business_score_2019 <- doing_business_score_2019 %>%
drop_na() %>%
arrange(desc(IC.BUS.DFRN.XQ)) %>%
slice_max(IC.BUS.DFRN.XQ,
n = 20,
with_ties = FALSE) %>%
mutate(text_score = as.character(IC.BUS.DFRN.XQ %>%
round(digits = 2)))
# Plot World Bank Regions
top_country_doing_business_score_2019 %>%
ggplot(aes(x = IC.BUS.DFRN.XQ, y = fct_reorder(country, IC.BUS.DFRN.XQ))) +
geom_point(size = 4,
color = palette_light()[[1]]) +
geom_label(aes(label = text_score),
fill = palette_light()[[2]],
hjust = -0.5) +
geom_segment(aes(xend = 0, yend = country)) +
xlim(0, 100) +
labs(x = "",
y = "",
title = str_glue("Top {nrow(top_country_doing_business_score_2019)} ease of doing business score by countries: year 2019"),
subtitle = str_glue("0 = lowest performance to 100 = best performance
Doing Business code: IC.BUS.DFRN.XQ"),
# You need to update it manually
caption = str_glue("Source: Doing Business - World Bank
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
legend.position = "bottom",
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())
```
# National business environment
- Some data about _Doing Business_ 2020 which corresponds to year 2019
```{r, out.width="75%"}
# Data World Bank countries
low_country_doing_business_score_2019 <- doing_business_score_2019 %>%
drop_na() %>%
arrange(desc(IC.BUS.DFRN.XQ)) %>%
slice_min(IC.BUS.DFRN.XQ,
n = 20,
with_ties = FALSE) %>%
mutate(text_score = as.character(IC.BUS.DFRN.XQ %>%
round(digits = 2)))
# Plot World Bank Regions
low_country_doing_business_score_2019 %>%
ggplot(aes(x = IC.BUS.DFRN.XQ, y = fct_reorder(country, IC.BUS.DFRN.XQ))) +
geom_point(size = 4,
color = palette_light()[[1]]) +
geom_label(aes(label = text_score),
fill = palette_light()[[2]],
hjust = -0.5) +
geom_segment(aes(xend = 0, yend = country)) +
xlim(0, 50) +
labs(x = "",
y = "",
title = str_glue("Lower {nrow(low_country_doing_business_score_2019)} ease of doing business score by countries: year 2019"),
subtitle = str_glue("0 = lowest performance to 100 = best performance
Doing Business code: IC.BUS.DFRN.XQ"),
# You need to update it manually
caption = str_glue("Source: Doing Business - World Bank
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
legend.position = "bottom",
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())
```
# Market-potential analysis
- Main topics commonly included and possible variables
```{r, out.width="95%", dev='png'}
grViz("
digraph boxes_and_circles {
graph [rankdir = LR]
node [shape = circle, color = '#2C3E50']
'Main variables';
node [shape = oval, color = '#E31A1C']
'Market size';
'Market growth rate';
'Market intensity';
'Market consumption\ncapacity';
'Infrastructure';
'Market receptivity'
node [shape = oval, color = '#18BC9C']
'Population\nElectric power consumption\nEnergy consumption';
'GDP per capita growth';
'GDP based on\npurchasing power parity (PPP)';
'Labor force\nwith advanced education';
'Fixed broadband subscriptions\nIndividuals using the internet\nMobile cellular subscriptions';
'Sum of exports and imports\nof goods and services\nas a percentage of GDP';
'Main variables'-> 'Market size';
'Main variables'-> 'Market growth rate';
'Main variables' -> 'Market intensity';
'Main variables' -> 'Market consumption\ncapacity';
'Main variables' -> 'Infrastructure';
'Main variables' -> 'Market receptivity';
'Market size' -> 'Population\nElectric power consumption\nEnergy consumption';
'Market growth rate' -> 'GDP per capita growth';
'Market intensity' -> 'GDP based on\npurchasing power parity (PPP)';
'Market consumption\ncapacity' -> 'Labor force\nwith advanced education';
'Infrastructure' -> 'Fixed broadband subscriptions\nIndividuals using the internet\nMobile cellular subscriptions';
'Market receptivity' -> 'Sum of exports and imports\nof goods and services\nas a percentage of GDP';
}
")
```
# Market-potential analysis
- Some data for the case of selected countries in South America
```{r}
iso3c_countries_selected <- c("ARG", "BRA", "CHL", "COL", "PER")
# Variables
## EG.USE.ELEC.KH.PC: Electric power consumption (kWh per capita)
## NY.GDP.PCAP.KD.ZG: GDP per capita growth (annual %)
## NY.GDP.MKTP.PP.KD: GDP, PPP (constant 2017 international $)
## SL.TLF.ADVN.ZS: Labor force with advanced education (% of total working-age population with advanced education)
## IT.NET.BBND.P2: Fixed broadband subscriptions (per 100 people)
## E.TRD.GNFS.ZS: Trade (% of GDP)
variable_codes <- c("EG.USE.ELEC.KH.PC", "NY.GDP.PCAP.KD.ZG",
"NY.GDP.MKTP.PP.KD", "SL.TLF.ADVN.ZS",
"IT.NET.BBND.P2", "NE.TRD.GNFS.ZS")
countries_selected_data <- wb_data(indicator = variable_codes,
country = iso3c_countries_selected) %>%
select(-iso2c)
```
```{r, out.width="80%"}
countries_selected_data %>%
select(iso3c:date, variable_codes[1]) %>%
ggplot() +
geom_point(aes_string(x = "date",
y = variable_codes[1],
fill = "country"),
color = "black",
shape = 21) +
geom_line(aes_string(x = "date",
y = variable_codes[1],
group = "country",
color = "country"),
show.legend = FALSE) +
scale_color_tq() +
scale_fill_tq() +
xlim(c(1970, 2015)) +
labs(x = "Year",
y = "kWh per capita",
fill = "",
title = "Electric power consumption",
subtitle = str_glue("Variables units: Kilowatt-hour per capita
Variable WDI code : {variable_codes[1]}"),
# You need to update it manually
caption = str_glue("Source: World Development Indicators - World Bank,
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom",
axis.text = element_text(face = "bold"))
```
# Market-potential analysis
- Some data for the case of selected countries in South America
```{r, out.width="80%"}
countries_selected_data %>%
select(iso3c:date, variable_codes[2]) %>%
ggplot() +
geom_point(aes_string(x = "date",
y = variable_codes[2],
fill = "country"),
color = "black",
shape = 21) +
geom_line(aes_string(x = "date",
y = variable_codes[2],
group = "country",
color = "country"),
show.legend = FALSE) +
geom_hline(yintercept = 0) +
scale_color_tq() +
scale_fill_tq() +
scale_y_continuous(labels = scales::number_format(suffix = "%", accuracy = 1)) +
labs(x = "Year",
y = "Percent",
fill = "",
title = "Annual GDP per capita growth",
subtitle = str_glue("Variables units: percent
Variable WDI code : {variable_codes[2]}"),
# You need to update it manually
caption = str_glue("Source: World Development Indicators - World Bank,
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom",
axis.text = element_text(face = "bold"))
```
# Market-potential analysis
- Some data for the case of selected countries in South America
```{r, out.width="80%"}
countries_selected_data %>%
select(iso3c:date, variable_codes[3]) %>%
ggplot() +
geom_point(aes_string(x = "date",
y = variable_codes[3],
fill = "country"),
color = "black",
shape = 21) +
geom_line(aes_string(x = "date",
y = variable_codes[3],
group = "country",
color = "country"),
show.legend = FALSE) +
xlim(c(1990, 2020)) +
scale_color_tq() +
scale_fill_tq() +
scale_y_continuous(labels = scales::number_format(scale = 1e-9,
suffix = "B",
accuracy = 1)) +
labs(x = "Year",
y = "Billions (Short scale)",
fill = "",
title = "GDP purchase power parity (PPP)",
subtitle = str_glue("Variables units: International constant USD (PPP) (Base year = 2017)
Variable WDI code : {variable_codes[3]}"),
# You need to update it manually
caption = str_glue("Source: World Development Indicators - World Bank,
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom",
axis.text = element_text(face = "bold"))
```
# Market-potential analysis
- Some data for the case of selected countries in South America
```{r, out.width="80%"}
countries_selected_data %>%
select(iso3c:date, variable_codes[4]) %>%
ggplot() +
geom_point(aes_string(x = "date",
y = variable_codes[4],
fill = "country"),
color = "black",
shape = 21) +
geom_line(aes_string(x = "date",
y = variable_codes[4],
group = "country",
color = "country"),
show.legend = FALSE) +
xlim(c(1996, 2020)) +
scale_color_tq() +
scale_fill_tq() +
scale_y_continuous(labels = scales::number_format(suffix = "%", accuracy = 1)) +
labs(x = "Year",
y = "Percent",
fill = "",
title = "Labor force with advanced education",
subtitle = str_glue("Variables units: percent of total working-age population with advanced education
Variable WDI code : {variable_codes[4]}"),
# You need to update it manually
caption = str_glue("Source: World Development Indicators - World Bank,
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom",
axis.text = element_text(face = "bold"))
```
# Market-potential analysis
- Some data for the case of selected countries in South America
```{r, out.width="80%"}
countries_selected_data %>%
select(iso3c:date, variable_codes[5]) %>%
ggplot() +
geom_point(aes_string(x = "date",
y = variable_codes[5],
fill = "country"),
color = "black",
shape = 21) +
geom_line(aes_string(x = "date",
y = variable_codes[5],
group = "country",
color = "country"),
show.legend = FALSE) +
xlim(c(1998, 2018)) +
scale_color_tq() +
scale_fill_tq() +
labs(x = "Year",
y = "Subscriptions per 100 people",
fill = "",
title = "Fixed broadband subscriptions",
subtitle = str_glue("Variables units: number of subscriptions per 100 people
Variable WDI code : {variable_codes[5]}"),
# You need to update it manually
caption = str_glue("Source: World Development Indicators - World Bank,
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom",
axis.text = element_text(face = "bold"))
```
# Market-potential analysis
- Some data for the case of selected countries in South America
```{r, out.width="80%"}
countries_selected_data %>%
select(iso3c:date, variable_codes[6]) %>%
ggplot() +
geom_point(aes_string(x = "date",
y = variable_codes[6],
fill = "country"),
color = "black",
shape = 21) +
geom_line(aes_string(x = "date",
y = variable_codes[6],
group = "country",
color = "country"),
show.legend = FALSE) +
scale_color_tq() +
scale_fill_tq() +
scale_y_continuous(labels = scales::number_format(suffix = "%", accuracy = 1)) +
labs(x = "Year",
y = "Percent",
fill = "",
title = "Trade as percent of GDP",
subtitle = str_glue("Variables units: sum of exports and imports as percent of GDP
Variable WDI code : {variable_codes[6]}"),
# You need to update it manually
caption = str_glue("Source: World Development Indicators - World Bank,
Last update: 2023−06−29")) +
theme(panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_rect(fill = "#f3fcfc"),
panel.background = element_rect(fill = "#f3f7fc"),
legend.background = element_rect(fill = "#f3fcfc"),
plot.title = element_text(face = "bold"),
axis.title = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
legend.position = "bottom",
axis.text = element_text(face = "bold"))
```
# Secondary market research
- __Market research companies__
+ Outside USA
+ Euromonitor International: [https://www.euromonitor.com/](https://www.euromonitor.com/)
+ Inside or with a subsidiary in USA [@greenbook_2019_2019, p 12-13]
+ Nielsen Holdings PLC: [https://www.nielsen.com/us/en/](https://www.nielsen.com/us/en/)
+ Gartner, Inc: [https://www.gartner.com/en](https://www.gartner.com/en)
+ IQVIA: [https://www.iqvia.com/](https://www.iqvia.com/)
+ Kantar: [https://www.kantar.com/](https://www.kantar.com/)
+ Information Resources, Inc: [https://www.iriworldwide.com/en-us](https://www.iriworldwide.com/en-us)
- __Government agencies__
+ National statistical offices: [https://unstats.un.org/home/nso_sites/](https://unstats.un.org/home/nso_sites/)
+ Data DANE[^1] (Colombia): [https://www.dane.gov.co/files/anda/](https://www.dane.gov.co/files/anda/)
[^1]: Departamento Administrativo Nacional de Estadística
# Secondary market research
\definecolor{tq_navy_blue}{RGB}{31, 120, 180}
\definecolor{python_green}{RGB}{10,103,27}
- Software for Data Analysis
+ \textcolor{tq_navy_blue}{\faIcon{r-project}} is a free software environment for statistical computing and graphics
+ [https://www.r-project.org/](https://www.r-project.org/)
+ \textcolor{python_green}{\faIcon{python}} is an interpreted, high-level, general-purpose programming language
+ [https://www.python.org/about/](https://www.python.org/about/)
- Tools to use with \textcolor{tq_navy_blue}{\faIcon{r-project}} and \textcolor{python_green}{\faIcon{python}}
+ __Rstudio IDE__ is an integrated development environment (IDE) for R
+ [https://posit.co/download/rstudio-desktop/](https://posit.co/download/rstudio-desktop/)
+ __Anaconda__ is a python distribution, with installation and package management tools
+ [https://www.anaconda.com/download/](https://www.anaconda.com/download/)
# Secondary market research
\definecolor{tq_navy_blue}{RGB}{31, 120, 180}
\definecolor{python_green}{RGB}{10,103,27}
- Learning Data Analysis
+ \textcolor{tq_navy_blue}{\faIcon{r-project}}
+ __Statistical Inference via Data Science__: [https://moderndive.com/](https://moderndive.com/)
+ __R for Data Science__: [https://r4ds.hadley.nz/](https://r4ds.hadley.nz/)
+ \textcolor{python_green}{\faIcon{python}}
+ __Python Data Science Handbook__: [https://jakevdp.github.io/PythonDataScienceHandbook/](https://jakevdp.github.io/PythonDataScienceHandbook/)
+ __Python for Data Analysis__: [https://wesmckinney.com/book/](https://wesmckinney.com/book/)
# Acknowledgments
\definecolor{tq_navy_blue}{RGB}{31, 120, 180}
\definecolor{tq_orange}{RGB}{255,127,0}
- To my family that supports me
- To the taxpayers of Colombia and the __[UMNG students](https://www.umng.edu.co/estudiante)__ who pay my salary
- To the __[Business Science](https://www.business-science.io/)__ and __[R4DS Online Learning](https://www.rfordatasci.com/)__ communities where I learn __[R](https://www.r-project.org/about.html)__
- To the __[R Core Team](https://www.r-project.org/contributors.html)__, the creators of __[RStudio IDE](https://rstudio.com/products/rstudio/)__ and the authors and maintainers of the packages __[tidyverse](https://CRAN.R-project.org/package=tidyverse)__, __[tidyquant](https://CRAN.R-project.org/package=tidyquant)__, __[wbstats](https://CRAN.R-project.org/package=wbstats)__, __[DiagrammeR](https://CRAN.R-project.org/package=DiagrammeR)__ and __[tinytex](https://CRAN.R-project.org/package=tinytex)__ for allowing me to access these tools without paying for a license
- To the __[Linux kernel community](https://www.kernel.org/category/about.html)__ for allowing me the possibility to use some __[Linux distributions](https://static.lwn.net/Distributions/)__ as my main __[OS](https://en.wikipedia.org/wiki/Operating_system)__ without paying for a license
# References