forked from LittleGuoKe/ConceptFERE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_demo.py
366 lines (335 loc) · 18.8 KB
/
train_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# import fastseq
from fewshot_re_kit.data_loader import get_loader, get_loader_pair, get_loader_unsupervised
from fewshot_re_kit.framework import FewShotREFramework
from fewshot_re_kit.sentence_encoder import CNNSentenceEncoder, BERTSentenceEncoder, BERTConceptSentenceEncoder, \
BERTPAIRSentenceEncoder, \
RobertaSentenceEncoder, RobertaPAIRSentenceEncoder, BERTPAIRConceptSentenceEncoder
# RobertaSentenceEncoder, RobertaPAIRSentenceEncoder
import models
from models.proto import Proto
from models.gnn import GNN
from models.snail import SNAIL
from models.metanet import MetaNet
from models.siamese import Siamese
from models.pair import Pair
from models.d import Discriminator
import sys
import torch
from torch import optim, nn
import numpy as np
import json
import os
from datetime import datetime
from fewshot_re_kit.conceptgraph_utils import loadingInstance2concept, loadingConceptGraphEntity2ID, load
from fewshot_re_kit.data_kg_loader import get_concept_loader_pair, get_concept_loader
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--train', default='train',
help='train file')
parser.add_argument('--val', default='val',
help='val file')
parser.add_argument('--test', default='test_wiki',
help='test file')
parser.add_argument('--adv', default=None,
help='adv file')
parser.add_argument('--trainN', default=10, type=int,
help='N in train')
parser.add_argument('--N', default=5, type=int,
help='N way')
parser.add_argument('--K', default=5, type=int,
help='K shot')
parser.add_argument('--Q', default=5, type=int,
help='Num of query per class')
parser.add_argument('--batch_size', default=4, type=int,
help='batch size')
parser.add_argument('--train_iter', default=30000, type=int,
help='num of iters in training')
parser.add_argument('--val_iter', default=1000, type=int,
help='num of iters in validation')
parser.add_argument('--test_iter', default=10000, type=int,
help='num of iters in testing')
parser.add_argument('--val_step', default=2000, type=int,
help='val after training how many iters')
parser.add_argument('--model', default='proto',
help='model name')
parser.add_argument('--encoder', default='cnn',
help='encoder: cnn or bert or roberta')
parser.add_argument('--max_length', default=128, type=int,
help='max length')
parser.add_argument('--lr', default=1e-1, type=float,
help='learning rate')
parser.add_argument('--weight_decay', default=1e-5, type=float,
help='weight decay')
parser.add_argument('--dropout', default=0.0, type=float,
help='dropout rate')
parser.add_argument('--na_rate', default=0, type=int,
help='NA rate (NA = Q * na_rate)')
parser.add_argument('--grad_iter', default=1, type=int,
help='accumulate gradient every x iterations')
parser.add_argument('--optim', default='sgd',
help='sgd / adam / adamw')
parser.add_argument('--hidden_size', default=230, type=int,
help='hidden size')
parser.add_argument('--load_ckpt', default=None,
help='load ckpt')
parser.add_argument('--save_ckpt', default='checkpoint/10way1shot.ConceptFere.pth.tar',
help='save ckpt')
parser.add_argument('--fp16', action='store_true',
help='use nvidia apex fp16')
parser.add_argument('--only_test', action='store_true',
help='only test')
# only for bert / roberta
parser.add_argument('--pair', action='store_true',
help='use pair model')
parser.add_argument('--pretrain_ckpt', default=None,
help='bert / roberta pre-trained checkpoint')
parser.add_argument('--cat_entity_rep', action='store_true',
help='concatenate entity representation as sentence rep')
# only for prototypical networks
parser.add_argument('--dot', action='store_true',
help='use dot instead of L2 distance for proto')
# experiment
parser.add_argument('--mask_entity', action='store_true',
help='mask entity names')
# concept
parser.add_argument('--ins2cpt', default='conceptgraph/instance2concept',
help='instance2concept in conceptgraph file')
# BeyondWordEmbedding
parser.add_argument('--normalize', dest='normalize', action='store_true')
parser.add_argument('--model_format', dest='model_format', default='bin', nargs='?', type=str)
parser.add_argument('--model_file', dest='model_file', default='/home/LAB/zhaoqh/yangshan/kg/pretrainingConceptGraph/models/cme.bin', nargs='?',
type=str)
parser.add_argument('--id_from', default='',
help='BeyondWordEmbedding Or keEmbedding Or MultiHeadAttentionAndBeyondWordEmbedding')
parser.add_argument('--concept', action='store_true', help='use concept in kg(ConceptGraph)')
parser.add_argument('--entity2id', default='conceptgraphEmbedding/TransE_l2_concetgraph_2/entities2id',
help='entity2id in conceptgraph file path')
parser.add_argument('--word2id', default='BeyondWordEmbedding/word2id', help='word2id file path')
parser.add_argument('--title2id', default='BeyondWordEmbedding/all_titles2id', help='title2id file path')
# kg embedding
parser.add_argument('--id2embeddingID', default='BeyondWordEmbedding/id2embeddingID', help='file path')
parser.add_argument('--BeyondWordEmbedding', default='BeyondWordEmbedding/partOfBeyondWordEmbedding',
help='file path')
parser.add_argument('--conceptEmbedding',
default='conceptgraphEmbedding/TransE_l2_concetgraph_2/concetgraph_TransE_l2_entity',
help='file path')
parser.add_argument('--sentenceORword', default='sentence', help='select bert output')
opt = parser.parse_args()
trainN = opt.trainN
N = opt.N
K = opt.K
Q = opt.Q
batch_size = opt.batch_size
model_name = opt.model
encoder_name = opt.encoder
max_length = opt.max_length
starting_time = datetime.now()
print('starting time', starting_time)
print("{}-way-{}-shot Few-Shot Relation Classification".format(N, K))
print("model: {}".format(model_name))
print("encoder: {}".format(encoder_name))
print("max_length: {}".format(max_length))
if encoder_name == 'cnn':
try:
glove_mat = np.load('./pretrain/glove/glove_mat.npy')
glove_word2id = json.load(open('./pretrain/glove/glove_word2id.json'))
except:
raise Exception("Cannot find glove files. Run glove/download_glove.sh to download glove files.")
sentence_encoder = CNNSentenceEncoder(
glove_mat,
glove_word2id,
max_length)
elif encoder_name == 'bert':
pretrain_ckpt = opt.pretrain_ckpt or 'bert-base-uncased'
if opt.pair:
# sentence_encoder = BERTPAIRSentenceEncoder(
# pretrain_ckpt,
# max_length)
# titles, redirects, vector_size, W, id2word, word2id, all_titles = load(model_path=opt.model_file,
# format=opt.model_format,
# load_concepts=True,
# normalize=opt.normalize,
# log_every=1000000)
if (opt.id_from == 'BeyondWordEmbedding') | (opt.id_from == 'MultiHeadAttentionAndBeyondWordEmbedding'):
with open('./data/BeyondWordEmbedding/id2embeddingID.json', mode='r', encoding='utf-8') as fr:
id2embeddingID = json.load(fr)
BeyondWordEmbedding = np.loadtxt('./data/BeyondWordEmbedding/partOfBeyondWordEmbedding.npy')
BeyondWordEmbedding = torch.from_numpy(BeyondWordEmbedding)
# print('loading conceptEmbedding')
# path = './data/conceptgraphEmbedding/TransE_l2_concetgraph_2/concetgraph_TransE_l2_entity.npy'
# conceptEmbedding = np.load(path)
# conceptEmbedding = torch.from_numpy(conceptEmbedding)
conceptEmbedding = {}
sentence_encoder = BERTPAIRConceptSentenceEncoder(
pretrain_ckpt,
max_length, conceptEmbedding, BeyondWordEmbedding, id2embeddingID,
id_from=opt.id_from)
else:
print('init BERTPAIRSentenceEncoder')
sentence_encoder = BERTPAIRSentenceEncoder(
pretrain_ckpt,
max_length)
else:
if opt.concept | (opt.id_from == 'BeyondWordEmbedding') | (
opt.id_from == 'MultiHeadAttentionAndBeyondWordEmbedding'):
# print('concept: use')
sentence_encoder = BERTConceptSentenceEncoder(pretrain_ckpt,
max_length, sentenceORword=opt.sentenceORword,
cat_entity_rep=opt.cat_entity_rep,
mask_entity=opt.mask_entity)
else:
sentence_encoder = BERTSentenceEncoder(
pretrain_ckpt,
max_length,
cat_entity_rep=opt.cat_entity_rep,
mask_entity=opt.mask_entity)
elif encoder_name == 'roberta':
pretrain_ckpt = opt.pretrain_ckpt or 'roberta-base'
if opt.pair:
sentence_encoder = RobertaPAIRSentenceEncoder(
pretrain_ckpt,
max_length)
else:
sentence_encoder = RobertaSentenceEncoder(
pretrain_ckpt,
max_length,
cat_entity_rep=opt.cat_entity_rep)
else:
raise NotImplementedError
if opt.pair:
if (opt.id_from == 'keEmbedding') | (
opt.id_from == 'MultiHeadAttentionAndBeyondWordEmbedding') | (opt.id_from == 'BeyondWordEmbedding'):
ins2cpt = loadingInstance2concept(path='./data/conceptgraph/instance2concept.pickle')
entity2id = loadingConceptGraphEntity2ID(root='./data/')
path1 = './data/BeyondWordEmbedding/word2id.json'
with open(path1, mode='r', encoding='utf-8') as f1:
word2id = json.load(f1)
path2 = './data/BeyondWordEmbedding/all_titles2id.json'
with open(path2, mode='r', encoding='utf-8') as f2:
title2id = json.load(f2)
train_data_loader = get_concept_loader_pair(opt.train, ins2cpt, entity2id, title2id, word2id,
sentence_encoder,
nWay=trainN, K=K, Q=Q, batch_size=batch_size, num_workers=0,
na_rate=opt.na_rate, encoder_name=encoder_name,
id_from=opt.id_from)
val_data_loader = get_concept_loader_pair(opt.val, ins2cpt, entity2id, title2id, word2id, sentence_encoder,
nWay=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size,
num_workers=0,
encoder_name=encoder_name, id_from=opt.id_from)
test_data_loader = get_concept_loader_pair(opt.test, ins2cpt, entity2id, title2id, word2id,
sentence_encoder,
num_workers=0,
nWay=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size,
encoder_name=encoder_name, id_from=opt.id_from)
else:
ins2cpt = loadingInstance2concept(path='./data/conceptgraph/instance2concept.pickle')
train_data_loader = get_loader_pair(opt.train, ins2cpt,
sentence_encoder,
nWay=trainN, K=K, Q=Q, batch_size=batch_size, num_workers=8,
na_rate=opt.na_rate, encoder_name=encoder_name)
val_data_loader = get_loader_pair(opt.val, ins2cpt, sentence_encoder,
nWay=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size,
num_workers=8,
encoder_name=encoder_name)
test_data_loader = get_loader_pair(opt.test, ins2cpt,
sentence_encoder,
num_workers=8,
nWay=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size,
encoder_name=encoder_name)
else:
if opt.concept | (opt.id_from == 'keEmbedding') | (
opt.id_from == 'MultiHeadAttentionAndBeyondWordEmbedding') | (opt.id_from == 'BeyondWordEmbedding'):
train_data_loader = get_concept_loader(opt.train, sentence_encoder,
nWay=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size,
ins2cpt=opt.ins2cpt, concept=opt.concept, id_from=opt.id_from,
entity2id=opt.entity2id, title2id=opt.title2id, word2id=opt.word2id)
val_data_loader = get_concept_loader(opt.val, sentence_encoder,
nWay=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size,
ins2cpt=opt.ins2cpt, concept=opt.concept, id_from=opt.id_from,
entity2id=opt.entity2id, title2id=opt.title2id, word2id=opt.word2id)
test_data_loader = get_concept_loader(opt.test, sentence_encoder,
nWay=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size,
ins2cpt=opt.ins2cpt, concept=opt.concept, id_from=opt.id_from,
entity2id=opt.entity2id, title2id=opt.title2id, word2id=opt.word2id)
else:
train_data_loader = get_loader(opt.train, sentence_encoder,
N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size)
val_data_loader = get_loader(opt.val, sentence_encoder,
N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size)
test_data_loader = get_loader(opt.test, sentence_encoder,
N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size)
if opt.adv:
adv_data_loader = get_loader_unsupervised(opt.adv, sentence_encoder,
N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size)
if opt.optim == 'sgd':
pytorch_optim = optim.SGD
elif opt.optim == 'adam':
pytorch_optim = optim.Adam
elif opt.optim == 'adamw':
from transformers import AdamW
pytorch_optim = AdamW
else:
raise NotImplementedError
if opt.adv:
d = Discriminator(opt.hidden_size)
framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader, adv_data_loader,
adv=opt.adv, d=d)
else:
framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader)
prefix = '-'.join([model_name, encoder_name, opt.train, opt.val, str(N), str(K)])
if opt.adv is not None:
prefix += '-adv_' + opt.adv
if opt.na_rate != 0:
prefix += '-na{}'.format(opt.na_rate)
if opt.dot:
prefix += '-dot'
if opt.cat_entity_rep:
prefix += '-catentity'
if model_name == 'proto':
model = Proto(sentence_encoder, dot=opt.dot)
elif model_name == 'gnn':
model = GNN(sentence_encoder, N, hidden_size=opt.hidden_size)
elif model_name == 'snail':
model = SNAIL(sentence_encoder, N, K, hidden_size=opt.hidden_size)
elif model_name == 'metanet':
model = MetaNet(N, K, sentence_encoder.embedding, max_length)
elif model_name == 'siamese':
model = Siamese(sentence_encoder, hidden_size=opt.hidden_size, dropout=opt.dropout)
elif model_name == 'pair':
model = Pair(sentence_encoder, hidden_size=opt.hidden_size)
# elif model_name=='concept':
# model=Pair(sentence_encoder,hidden_size=opt.hidden_sieze)
else:
raise NotImplementedError
if not os.path.exists('checkpoint'):
os.mkdir('checkpoint')
ckpt = 'checkpoint/{}.pth.tar'.format(prefix)
if opt.save_ckpt:
ckpt = opt.save_ckpt
if torch.cuda.is_available():
print('-------------------------------------model.cuda()-------------------------', model.cuda())
model.cuda()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not opt.only_test:
if encoder_name in ['bert', 'roberta']:
bert_optim = True
else:
bert_optim = False
framework.train(device, model, prefix, batch_size, trainN, N, K, Q,
pytorch_optim=pytorch_optim, load_ckpt=opt.load_ckpt, save_ckpt=ckpt,
na_rate=opt.na_rate, val_step=opt.val_step, fp16=opt.fp16, pair=opt.pair,
train_iter=opt.train_iter, val_iter=opt.val_iter, bert_optim=bert_optim)
else:
ckpt = opt.load_ckpt
if ckpt is None:
print("Warning: --load_ckpt is not specified. Will load Hugginface pre-trained checkpoint.")
ckpt = 'none'
acc = framework.eval(device, model, batch_size, N, K, Q, opt.test_iter, na_rate=opt.na_rate, ckpt=ckpt,
pair=opt.pair)
print("RESULT: %.2f" % (acc * 100))
ending_time = datetime.now()
print('ending time', ending_time)
print('training takes time', ending_time - starting_time)
if __name__ == "__main__":
main()