-
Notifications
You must be signed in to change notification settings - Fork 0
/
sliced_whole_validation.py
139 lines (118 loc) · 4.2 KB
/
sliced_whole_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import json
from dataset import PAC2019, PAC20192D
from model import Model, VGGBasedModel, VGGBasedModel2D
from model_resnet import resnet18
import torch
from torch.autograd import Variable
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
import medicaltorch.transforms as mt_transforms
import torchvision as tv
import torchvision.utils as vutils
import matplotlib.pyplot as plt
from collections import defaultdict, Counter
from tqdm import *
with open("config.json") as fid:
ctx = json.load(fid)
val_set = PAC2019(ctx, set='val', split=0.8)
val_loader = DataLoader(val_set, shuffle=False, drop_last=False,
num_workers=8, batch_size=1)
model = resnet18()
model.cuda()
# model.load_state_dict(torch.load('models/lr0.0006_rampup20.pt'))
model.load_state_dict(torch.load('models/2d.pt'))
model.eval()
portion = 0.8
errors = []
error_per_age = defaultdict(list)
error_per_age_per_slice = defaultdict(lambda: defaultdict(list))
errors_val = []
for i, data in enumerate(tqdm(val_loader)):
gm_image = Variable(data["gm"]).float().cuda()
wm_image = Variable(data["wm"]).float().cuda()
# print(input_image.shape)
slices = []
start = int((1.-portion)*gm_image.shape[1])
end = int(portion*gm_image.shape[1])
gm_image = gm_image[0,start:end,:,:]
wm_image = wm_image[0,start:end,:,:]
# print(gm_image.shape)
for slice_idx in range(gm_image.shape[0]):
slice_gm = gm_image[slice_idx,:,:]
slice_gm = slice_gm.unsqueeze(0)
slice_wm = wm_image[slice_idx,:,:]
slice_wm = slice_wm.unsqueeze(0)
slice = torch.cat([slice_gm, slice_wm], dim=0)
# print(slice.shape)
slices.append({
'image': slice,
'label': data['label']
})
# print('Slice: ', slice.shape)
error = []
for idx, slice in enumerate(slices):
age = int(slice['label'].item())
slice['image'] = slice['image'].unsqueeze(0)
# print(slice['image'].shape)
output = model(slice['image'])
# print(output[0], slice['label'])
error.append(np.abs(output[0].item() - slice['label'].item()))
error_per_age_per_slice[idx][age].append(np.abs(output[0].item() - slice['label'].item()))
# print(error)
errors.append(error)
errors_val.append(np.mean(error))
error_per_age[int(slice['label'].item())].append(np.mean(error))
print('Validation error: ', np.mean(errors_val))
min_slice = 0
# print(error_per_age_per_slice.keys())
max_slice = len(error_per_age_per_slice.keys())
min_age = min(error_per_age_per_slice[0].keys())
max_age = max(error_per_age_per_slice[0].keys())+1
# print('Min/max: ', min_age, max_age)
heatmap = np.zeros((max_age, max_slice))
# print(error_per_age_per_slice.keys())
# print(error_per_age_per_slice[0].keys())
# print(list(sorted(error_per_age_per_slice[0].keys())))
for slice_idx in sorted(error_per_age_per_slice.keys()):
# print('here')
for age in range(0, 75):
# print('age: here')
# print('Slice/Age: %d/%d --> ' % (slice_idx, age), error_per_age_per_slice[slice_idx][age])
mean = np.mean(error_per_age_per_slice[slice_idx][age])
if not np.isnan(mean):
heatmap[age,slice_idx] = mean
# print('mean: ', np.mean(error_per_age_per_slice[slice_idx][age]))
plt.imshow(heatmap, cmap='viridis')
plt.colorbar()
plt.ylabel('Age')
plt.xlabel('Slice')
# plt.grid()
plt.show()
# raise
# print(error_per_age)
sorted_values = []
keys = []
for k in sorted(error_per_age.keys()):
sorted_values.append(error_per_age[k])
keys.append(k)
fig = plt.figure(1, figsize=(9, 6))
ax = fig.add_subplot(111)
ax.boxplot(sorted_values)
ax.set_xticklabels(keys)
plt.show()
errors = np.array(errors)
# print(errors.shape)
mean_errors = np.mean(errors, axis=0)
# plt.plot(mean_errors)
fig, (ax,ax2) = plt.subplots(nrows=2, sharex=True)
x = np.linspace(0, errors.shape[1])
extent = [x[0]-(x[1]-x[0])/2., x[-1]+(x[1]-x[0])/2.,0,1]
ax.imshow(mean_errors[np.newaxis,:], cmap="viridis", aspect="auto", extent=extent)
# print(mean_errors.shape)
# print(x.shape)
ax2.plot(np.arange(mean_errors.shape[0]),mean_errors)
plt.ylabel('Mean Absolute Error (MAE)')
plt.xlabel('Slice index')
plt.show()
# print(mean_errors)