-
Notifications
You must be signed in to change notification settings - Fork 3
Python Protobuf interface
The protobuf structures used in calin are accessible from Python through a SWIG interface. The proto definitions are converted to a SWIG interface file using an extension to protobuf compiler. The interface file is then compiled using SWIG to C++ and built. In case of need the interface files can be found in the build tree, for example the protobuf for the TelescopeEvent structure, which can be found in proto/iact_data/telescope_event.proto, will be translated into a SWIG interface file that can be found under the build directory in proto/iact_data/telescope_event.pb.i.
Protobuf packages correspond to Python modules.
An protobuf enumeration such as
enum EnumType {
UNKNOWN = 0,
STARTED = 1,
RUNNING = 2
};
will produce functions
var_bool = EnumType_IsValid(var_int)
var_string = EnumType_Name(var_int)
[var_bool, value] = EnumType_Parse(var_string)
which respectively:
- check whether an integer
var_int
represents a valid enumerated value, - convert integer values to the stringified name of the enumerated value, and
- convert stringified names back to integer values.
Where var_bool
is a Python boolean value (True
or False
), var_int
is an Python integer variable and var_string
is a Python string variable. In addition two package or class constants are defined giving the minimum and maximum integer values in the enum.
var_int = EnumType_MIN
var_int = EnumType_MAX
For the example given above we would have,
>>> print(EnumType_MIN)
0
>>> print(EnumType_MAX)
2
>>> print(EnumType_IsValid(1))
True
>>> print(EnumType_IsValid(3))
False
>>> print(EnumType_Name(1))
STARTED
>>> print(EnumType_Name(3))
>>> print(EnumType_Parse('RUNNING'))
[True, 2]
>>> print(EnumType_Parse('BLAHBLAHBLAH'))
[False, 0]
If an enum is defined within a containing message, rather than in the global space, these functions and constants are part of the containing message (i.e. they are class functions and class variables).
Protobuf messages produce Python classes that wrap the underlying C++ code. Messages are all derived from the base class google.Message
from which they inherit the following member functions:
m.CopyFrom(m_from)
m.MergeFrom(m_from)
var_int = m.SpaceUsed()
var_string = m.DebugString()
var_string = m.ShortDebugString()
var_string = m.GetTypeName()
m.Clear()
var_bool = m.IsInitialized()
var_int = m.ByteSize()
var_bool = m.ParseFromString(var_bytes)
var_bool = m.ParsePartialFromString(var_bytes)
var_bytes = m.SerializeAsString()
var_bytes = m.SerializePartialAsString()
The meanings of these functions can be deduced from the Google Protobuf documentation site.
Access to each field in the Protobuf message is given by Python class member functions that are generated automatically from the definition of the message. The specific Python functions produced depend on the type of field, as described in the sections below. The names of the functions are all based on the name of the field in the .proto
definition; for example a repeated
field named telescopes
will have a field telescopes_size()
which gives the number of entries in the repeated field.
A message with a simple singular numeric or string field, such as
message SimpleMessage {
int32 i = 1;
}
will produce the following Python member functions to get, set and clear the field i
:
m = SimpleMessage()
var_int = m.i()
m.set_i(var_int)
m.clear_i()
where var_int
is a Python variable. The correspondence between Protobuf and Python types is given in the table below:
Protobuf type | Python 3 type |
---|---|
bool | bool |
uint32, sint32, fixed32, sfixed32 | int |
uint64, sint64, fixed64, sfixed64 | int |
float | float |
double | float |
string | str |
bytes | bytes |
A message with an enum field of type EnumType
, such as
message SimpleMessage {
EnumType e = 1;
}
produces Python member functions to get, set, and clear e
,
m = SimpleMessage()
var_int = m.e()
m.set_e(var_int)
m.clear_e()
In this case var_int
is an integer type.
As in the C++ implementation embedded message fields work differently to the data simple types above. They do not have traditional setter functions that take an Message as an input, but rather there is a mutable accessor that returns a proxy that can be use manipulate the sub-message.
For singular message fields such as:
message SubMessage {
int32 i = 1;
}
message SimpleMessage {
SubMessage sm = 1;
}
the Python code for the SimpleMessage
class will have the following member functions:
m = SimpleMessage()
var_bool = m.has_sm()
var_proxy = m.const_sm()
var_proxy = m.mutable_sm()
var_proxy = m.sm()
m.clear_sm()
where var_proxy
is a Python SWIG proxy for the C++ instance of the SubMessage. This proxy can be used to access the fields of the sub message, for example the value of i
can be accessed as follows,
var_int = sm.i()
The function m.has_sm()
can be used to test whether the field sm
is set within m
or not. The function m.clear_sm()
clears any instance of sm
in m
. The other three functions provide access to the sub-field. Of these the recommended accessor is the simple function m.sm()
which provides read and write access to the sub-message. The function m.const_sm()
is intended to provide read-only access to the sub-field but unfortunately this is not enforced by SWIG/Python and hence the user is not forbidden from invoking non-const functions on var_proxy
- the consequences of doing so on the underlying C++ implementation could be unfortunate, and hence use of the const functions are not recommended and they may be removed. The function m.mutable_sm()
is equivalent to m.sm()
.
A Protobuf field such as,
message SimpleMessage {
repeated int32 vec_i = 1;
}
can be accessed from Python using the following functions:
m = SimpleMessage()
var_int = m.vec_i_size()
var_int = m.vec_i(index)
m.add_vec_i(var_int)
m.set_vec_i(index, var_int)
array_int = m.vec_i()
array_int = m.vec_i_copy()
array_int = m.vec_i_view()
m.set_vec_i(array_int)
m.clear_vec_i()
-
m.vec_i_size
returns the number of the items in the repeated field -
m.vec_i(index)
returns the element referred to byindex
. An assertion is thrown ifindex
is not in the range of-m.vec_i_size()
<=index
<m.vec_i_size()
. -
m.add_vec_i(var_int)
appends the value ofvar_int
to the field -
m.set_vec_i(index, var_int)
sets the value of the element referred to byindex
tovar_int
. An assertion is thrown ifindex
is not in the range of-m.vec_i_size()
<=index
<m.vec_i_size()
. -
m.vec_i()
returns a numpy array with a copy of all elements. This is identical tom.vec_i_copy()
below. -
m.vec_i_copy()
returns a numpy array with a copy of all elements. -
m.vec_i_view()
returns a numpy array that gives direct access to the elements in protobuf without copying. Faster thanm.vec_i_copy()
but may pose problems if the protobuf is deleted while the array is still in use. -
m.set_vec_i(array_int)
clears any existing elements in the vector and adds all those inarray_int
which must be a numpy array or a list. -
m.clear_vec_i()
clears all elements in the vector.
A repeated string field produces the same set of functions as for numeric fields. For example a message,
message SimpleMessage {
repeated string vec_s = 1;
}
generates the following accessors,
m = SimpleMessage()
var_int = m.vec_s_size()
var_string = m.vec_s(index)
m.add_vec_s(var_string)
m.set_vec_s(index, var_string)
list_string = m.vec_s()
m.set_vec_s(list_string)
m.clear_vec_s()
The only difference between them and the numeric accessors described in the previous secton is that m.vec_s()
returns a list
of str
(since there is no numpy array type for strings).
A repeated bytes field produces the same set of functions as for numeric fields and string fields, apart from the array/list accessors which are not generated in the present implementation.
message SimpleMessage {
repeated bytes vec_b = 1;
}
generates the following accessors,
m = SimpleMessage()
var_int = m.vec_b_size()
var_bytes = m.vec_b(index)
m.add_vec_b(var_bytes)
m.set_vec_b(index, var_bytes)
m.clear_vec_b()
message SimpleMessage {
repeated EnumType vec_e = 1;
}
A repeated sub-message results in single element and vector accessors and setters, and functions to clear and append to the list. For example, the following message,
message SubMessage {
int32 i = 1;
}
message SimpleMessage {
repeated SubMessage vec_sm = 1;
}
produces a set of pythion functions
m = SimpleMessage()
var_int = m.vec_sm_size()
var_proxy = m.vec_sm(index)
var_proxy = m.mutable_vec_sm(index)
var_proxy = m.const_vec_sm(index)
m.add_vec_sm(var_proxy)
m.set_vec_sm(index, var_proxy)
list_proxy = m.vec_sm()
list_proxy = m.mutable_vec_sm()
list_proxy = m.const_vec_sm()
m.set_vec_sm(list_proxy)
m.clear_vec_sm()
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.