forked from pbridger/pytorch-video-pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tuning_concurrency.py
317 lines (251 loc) · 10.7 KB
/
tuning_concurrency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os, sys
import math, time
import itertools
import contextlib
import copy
import threading, queue
import gil_load
import gi
gi.require_version('Gst', '1.0')
from gi.repository import Gst
import torch, torchvision
import ghetto_nvds
frame_format, pixel_bytes, model_precision = 'RGBA', 4, 'fp16'
model_dtype = torch.float16 if model_precision == 'fp16' else torch.float32
detection_threshold = 0.4
start_time, frames_processed = time.time(), 0
batch_size, num_inference_threads = 8, 2
num_devices = torch.cuda.device_count()
detector = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=model_precision).eval()
# context manager to help keep track of ranges of time, using NVTX
@contextlib.contextmanager
def nvtx_range(msg):
depth = torch.cuda.nvtx.range_push(msg)
try:
yield depth
finally:
torch.cuda.nvtx.range_pop()
create_tensor_stream = torch.cuda.Stream()
def on_frame_probe(pad, info):
global start_time, frames_processed
buf = info.get_buffer()
# print(f'[{buf.pts / Gst.SECOND:6.2f}]')
device, detector, dboxes, image_queue = thread_contexts[frames_processed % len(thread_contexts)]
with torch.no_grad():
with torch.cuda.stream(create_tensor_stream):
image_tensor = buffer_to_image_tensor(device, buf, pad.get_current_caps())
image_queue.put((image_tensor, torch.cuda.Event()))
start_time = time.time() if frames_processed == 0 else start_time
frames_processed += 1
return Gst.PadProbeReturn.OK
def buffer_to_image_tensor(device, buf, caps):
with nvtx_range('buffer_to_image_tensor'):
caps_structure = caps.get_structure(0)
height, width = caps_structure.get_value('height'), caps_structure.get_value('width')
is_mapped, map_info = buf.map(Gst.MapFlags.READ)
if is_mapped:
try:
source_surface = ghetto_nvds.NvBufSurface(map_info)
torch_surface = ghetto_nvds.NvBufSurface(map_info)
dest_tensor = torch.zeros(
(torch_surface.surfaceList[0].height, torch_surface.surfaceList[0].width, 4),
dtype=torch.uint8,
device=device
)
torch_surface.struct_copy_from(source_surface)
assert(source_surface.numFilled == 1)
assert(source_surface.surfaceList[0].colorFormat == 19) # RGBA
# make torch_surface map to dest_tensor memory
torch_surface.surfaceList[0].dataPtr = dest_tensor.data_ptr()
torch_surface.gpuId = device.index
# copy decoded GPU buffer (source_surface) into Pytorch tensor (torch_surface -> dest_tensor)
torch_surface.mem_copy_from(source_surface)
finally:
buf.unmap(map_info)
return dest_tensor[:, :, :3]
def inference_thread_f(device, detector, dboxes, image_queue):
cuda_stream = torch.cuda.Stream(device)
while True:
images, events = [], []
while len(images) < batch_size:
next_image, image_event = image_queue.get()
if next_image is None:
return None
images.append(next_image)
events.append(image_event)
with torch.cuda.stream(cuda_stream):
with torch.no_grad():
for e in events:
e.synchronize()
image_batch = preprocess(device, torch.stack(images))
with nvtx_range('inference'):
locs, labels = detector(image_batch)
image_batch = []
postprocess(device, dboxes, locs, labels)
def preprocess(device, image_batch):
'300x300 centre crop, normalize, HWC -> CHW'
with nvtx_range('preprocess'):
batch_dim, image_height, image_width, image_depth = image_batch.size()
copy_x, copy_y = min(300, image_width), min(300, image_height)
dest_x_offset = max(0, (300 - image_width) // 2)
source_x_offset = max(0, (image_width - 300) // 2)
dest_y_offset = max(0, (300 - image_height) // 2)
source_y_offset = max(0, (image_height - 300) // 2)
input_batch = torch.zeros((batch_dim, 300, 300, 3), dtype=model_dtype, device=device)
input_batch[:, dest_y_offset:dest_y_offset + copy_y, dest_x_offset:dest_x_offset + copy_x] = \
image_batch[:, source_y_offset:source_y_offset + copy_y, source_x_offset:source_x_offset + copy_x]
return torch.einsum(
'bhwc -> bchw',
normalize(input_batch / 255)
).contiguous()
def normalize(input_tensor):
'Nvidia SSD300 code uses mean and std-dev of 128/256'
return (2.0 * input_tensor) - 1.0
def init_dboxes(device):
'adapted from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Detection/SSD/src/utils.py'
fig_size = 300
feat_size = [38, 19, 10, 5, 3, 1]
steps = [8, 16, 32, 64, 100, 300]
scales = [21, 45, 99, 153, 207, 261, 315]
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
fk = fig_size / torch.tensor(steps).float()
dboxes = []
# size of feature and number of feature
for idx, sfeat in enumerate(feat_size):
sk1 = scales[idx] / fig_size
sk2 = scales[idx + 1] / fig_size
sk3 = math.sqrt(sk1 * sk2)
all_sizes = [(sk1, sk1), (sk3, sk3)]
for alpha in aspect_ratios[idx]:
w, h = sk1 * math.sqrt(alpha), sk1 / math.sqrt(alpha)
all_sizes.append((w, h))
all_sizes.append((h, w))
for w, h in all_sizes:
for i, j in itertools.product(range(sfeat), repeat=2):
cx, cy = (j + 0.5) / fk[idx], (i + 0.5) / fk[idx]
dboxes.append((cx, cy, w, h))
return torch.tensor(
dboxes,
dtype=model_dtype,
device=device
).clamp(0, 1)
scale_xy = 0.1
scale_wh = 0.2
def xywh_to_xyxy(dboxes_xywh, bboxes_batch, scores_batch):
bboxes_batch = bboxes_batch.permute(0, 2, 1)
scores_batch = scores_batch.permute(0, 2, 1)
bboxes_batch[:, :, :2] = scale_xy * bboxes_batch[:, :, :2]
bboxes_batch[:, :, 2:] = scale_wh * bboxes_batch[:, :, 2:]
bboxes_batch[:, :, :2] = bboxes_batch[:, :, :2] * dboxes_xywh[:, :, 2:] + dboxes_xywh[:, :, :2]
bboxes_batch[:, :, 2:] = bboxes_batch[:, :, 2:].exp() * dboxes_xywh[:, :, 2:]
# transform format to ltrb
l, t, r, b = bboxes_batch[:, :, 0] - 0.5 * bboxes_batch[:, :, 2],\
bboxes_batch[:, :, 1] - 0.5 * bboxes_batch[:, :, 3],\
bboxes_batch[:, :, 0] + 0.5 * bboxes_batch[:, :, 2],\
bboxes_batch[:, :, 1] + 0.5 * bboxes_batch[:, :, 3]
bboxes_batch[:, :, 0] = l
bboxes_batch[:, :, 1] = t
bboxes_batch[:, :, 2] = r
bboxes_batch[:, :, 3] = b
return bboxes_batch, torch.nn.functional.softmax(scores_batch, dim=-1)
def postprocess(device, dboxes, locs, labels):
with nvtx_range('postprocess'):
locs, probs = xywh_to_xyxy(dboxes, locs, labels)
# flatten batch and classes
batch_dim, box_dim, class_dim = probs.size()
flat_locs = locs.reshape(-1, 4).repeat_interleave(class_dim, dim=0)
flat_probs = probs.view(-1)
class_indexes = torch.arange(class_dim, device=device).repeat(batch_dim * box_dim)
image_indexes = (torch.ones(box_dim * class_dim, device=device) * torch.arange(1, batch_dim + 1, device=device).unsqueeze(-1)).view(-1)
# only do NMS on detections over threshold, and ignore background (0)
threshold_mask = (flat_probs > detection_threshold) & (class_indexes > 0)
flat_locs = flat_locs[threshold_mask]
flat_probs = flat_probs[threshold_mask]
class_indexes = class_indexes[threshold_mask]
image_indexes = image_indexes[threshold_mask]
nms_mask = torchvision.ops.boxes.batched_nms(
flat_locs,
flat_probs,
class_indexes * image_indexes,
iou_threshold=0.7
)
bboxes = flat_locs[nms_mask].cpu()
probs = flat_probs[nms_mask].cpu()
class_indexes = class_indexes[nms_mask].cpu()
# if bboxes.size(0) > 0:
# print(bboxes, class_indexes, probs)
if num_devices:
thread_contexts = []
for device_idx in range(num_devices):
device = torch.device(f'cuda:{device_idx}')
device_detector = copy.deepcopy(detector).to(device)
dboxes_xywh = init_dboxes(device).unsqueeze(dim=0)
for inference_idx in range(num_inference_threads):
thread_queue = queue.Queue(2 * batch_size)
thread_contexts.append((device, device_detector, dboxes_xywh, thread_queue))
else:
sys.exit(1)
try:
gil_load.init()
gil_load_enabled = True
except RuntimeError:
gil_load_enabled = False
Gst.init()
pipeline = Gst.parse_launch(f'''
filesrc location=media/in.mp4 num-buffers=2048 !
decodebin !
nvvideoconvert !
video/x-raw(memory:NVMM),format={frame_format} !
fakesink name=s
''')
pipeline.get_by_name('s').get_static_pad('sink').add_probe(
Gst.PadProbeType.BUFFER,
on_frame_probe
)
inference_threads = []
for device, detector, dboxes, image_queue in thread_contexts:
inference_threads.append(
threading.Thread(target=inference_thread_f, args=(device, detector, dboxes, image_queue))
)
inference_threads[-1].start()
# for each thread doing the pointless gil_10_pc, the GIL is busy an additional ~10% of time
def gil_10_pc():
while True:
for i in range(300):
a = 1 + 1
time.sleep(1e-9)
gil_threads = []
for gil_idx in range(0):
gil_threads.append(threading.Thread(target=gil_10_pc, daemon=True))
gil_threads[-1].daemon = True
gil_threads[-1].start()
pipeline.set_state(Gst.State.PLAYING)
if gil_load_enabled:
gil_load.start()
try:
while True:
msg = pipeline.get_bus().timed_pop_filtered(
Gst.SECOND,
Gst.MessageType.EOS | Gst.MessageType.ERROR
)
if msg:
text = msg.get_structure().to_string() if msg.get_structure() else ''
msg_type = Gst.message_type_get_name(msg.type)
print(f'{msg.src.name}: [{msg_type}] {text}')
break
finally:
if gil_load_enabled:
gil_load.stop()
for device, detector, dboxes, image_queue in thread_contexts:
image_queue.put((None, None))
for inference_thread in inference_threads:
inference_thread.join()
finish_time = time.time()
open(f'logs/{os.path.splitext(sys.argv[0])[0]}.pipeline.dot', 'w').write(
Gst.debug_bin_to_dot_data(pipeline, Gst.DebugGraphDetails.ALL)
)
pipeline.set_state(Gst.State.NULL)
print(f'FPS: {frames_processed / (finish_time - start_time):.2f}')
if gil_load_enabled:
print()
print(gil_load.format(gil_load.get()))