forked from pbridger/pytorch-video-pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tuning_baseline.py
136 lines (111 loc) · 4.64 KB
/
tuning_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os, sys
import math, time
import contextlib
import gi
gi.require_version('Gst', '1.0')
from gi.repository import Gst
import numpy as np
import torch, torchvision
frame_format, pixel_bytes, model_precision = 'RGBA', 4, 'fp32'
model_dtype = torch.float16 if model_precision == 'fp16' else torch.float32
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
detector = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=model_precision).eval().to(device)
ssd_utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils')
detection_threshold = 0.4
start_time, frames_processed = None, 0
# context manager to help keep track of ranges of time, using NVTX
@contextlib.contextmanager
def nvtx_range(msg):
depth = torch.cuda.nvtx.range_push(msg)
try:
yield depth
finally:
torch.cuda.nvtx.range_pop()
def on_frame_probe(pad, info):
global start_time, frames_processed
start_time = start_time or time.time()
with nvtx_range('on_frame_probe'):
buf = info.get_buffer()
print(f'[{buf.pts / Gst.SECOND:6.2f}]')
image_tensor = buffer_to_image_tensor(buf, pad.get_current_caps())
image_batch = preprocess(image_tensor.unsqueeze(0))
frames_processed += image_batch.size(0)
with torch.no_grad():
with nvtx_range('inference'):
locs, labels = detector(image_batch)
postprocess(locs, labels)
return Gst.PadProbeReturn.OK
def buffer_to_image_tensor(buf, caps):
with nvtx_range('buffer_to_image_tensor'):
caps_structure = caps.get_structure(0)
height, width = caps_structure.get_value('height'), caps_structure.get_value('width')
is_mapped, map_info = buf.map(Gst.MapFlags.READ)
if is_mapped:
try:
image_array = np.ndarray(
(height, width, pixel_bytes),
dtype=np.uint8,
buffer=map_info.data
)
return torch.from_numpy(
image_array[:,:,:3].copy() # RGBA -> RGB, and extend lifetime beyond subsequent unmap
)
finally:
buf.unmap(map_info)
def preprocess(image_batch):
'300x300 centre crop, normalize, HWC -> CHW'
with nvtx_range('preprocess'):
batch_dim, image_height, image_width, image_depth = image_batch.size()
copy_x, copy_y = min(300, image_width), min(300, image_height)
dest_x_offset = max(0, (300 - image_width) // 2)
source_x_offset = max(0, (image_width - 300) // 2)
dest_y_offset = max(0, (300 - image_height) // 2)
source_y_offset = max(0, (image_height - 300) // 2)
input_batch = torch.zeros((batch_dim, 300, 300, 3), dtype=model_dtype, device=device)
input_batch[:, dest_y_offset:dest_y_offset + copy_y, dest_x_offset:dest_x_offset + copy_x] = \
image_batch[:, source_y_offset:source_y_offset + copy_y, source_x_offset:source_x_offset + copy_x]
return torch.einsum(
'bhwc -> bchw',
normalize(input_batch / 255)
).contiguous()
def normalize(input_tensor):
'Nvidia SSD300 code uses mean and std-dev of 128/256'
return (2.0 * input_tensor) - 1.0
def postprocess(locs, labels):
with nvtx_range('postprocess'):
results_batch = ssd_utils.decode_results((locs, labels))
results_batch = [ssd_utils.pick_best(results, detection_threshold) for results in results_batch]
for bboxes, classes, scores in results_batch:
if scores.shape[0] > 0:
print(bboxes, classes, scores)
Gst.init()
pipeline = Gst.parse_launch(f'''
filesrc location=media/in.mp4 num-buffers=256 !
decodebin !
nvvideoconvert !
video/x-raw,format={frame_format} !
fakesink name=s
''')
pipeline.get_by_name('s').get_static_pad('sink').add_probe(
Gst.PadProbeType.BUFFER,
on_frame_probe
)
pipeline.set_state(Gst.State.PLAYING)
try:
while True:
msg = pipeline.get_bus().timed_pop_filtered(
Gst.SECOND,
Gst.MessageType.EOS | Gst.MessageType.ERROR
)
if msg:
text = msg.get_structure().to_string() if msg.get_structure() else ''
msg_type = Gst.message_type_get_name(msg.type)
print(f'{msg.src.name}: [{msg_type}] {text}')
break
finally:
finish_time = time.time()
open(f'logs/{os.path.splitext(sys.argv[0])[0]}.pipeline.dot', 'w').write(
Gst.debug_bin_to_dot_data(pipeline, Gst.DebugGraphDetails.ALL)
)
pipeline.set_state(Gst.State.NULL)
print(f'FPS: {frames_processed / (finish_time - start_time):.2f}')