forked from KimMeen/Time-LLM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_pretrain.py
301 lines (258 loc) · 14.7 KB
/
run_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import argparse
import torch
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate import DistributedDataParallelKwargs
from torch import nn, optim
from torch.optim import lr_scheduler
from data_provider_pretrain.data_factory import data_provider
from models import Autoformer, DLinear, TimeLLM
import time
import random
import numpy as np
import os
import wandb
os.environ['CURL_CA_BUNDLE'] = ''
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
from utils.tools import del_files, EarlyStopping, adjust_learning_rate, vali, load_content
parser = argparse.ArgumentParser(description='Time-LLM')
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
# basic config
parser.add_argument('--task_name', type=str, required=False, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, required=False, default=1, help='status')
parser.add_argument('--model_id', type=str, required=False, default='test', help='model id')
parser.add_argument('--model_comment', type=str, required=False, default='none', help='prefix when saving test results')
parser.add_argument('--model', type=str, required=False, default='Autoformer',
help='model name, options: [Autoformer, DLinear]')
parser.add_argument('--seed', type=int, default=2021, help='random seed')
# data loader
parser.add_argument('--data_pretrain', type=str, required=False, default='ETTm1', help='dataset type')
parser.add_argument('--data', type=str, required=False, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='/home/yl2428/Time-LLM/dataset', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--data_path_pretrain', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; '
'M:multivariate predict multivariate, S: univariate predict univariate, '
'MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--loader', type=str, default='modal', help='dataset type')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, '
'options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], '
'you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# model define
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=16, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=32, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--prompt_domain', type=int, default=0, help='')
parser.add_argument('--llm_model', type=str, default='LLAMA', help='LLM model') # LLAMA, GPT2, BERT
parser.add_argument('--llm_dim', type=int, default='4096', help='LLM model dimension')# LLama7b:4096; GPT2-small:768; BERT-base:768
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--align_epochs', type=int, default=10, help='alignment epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--eval_batch_size', type=int, default=8, help='batch size of model evaluation')
parser.add_argument('--patience', type=int, default=5, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--pct_start', type=float, default=0.2, help='pct_start')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
parser.add_argument('--llm_layers', type=int, default=6)
parser.add_argument('--percent', type=int, default=100)
parser.add_argument('--wandb_key', type=str, default='6f1080f993d5d7ad6103e69ef57dd9291f1bf366')
parser.add_argument('--num_individuals', type=int, default=-1)
parser.add_argument('--enable_covariates', type=int, default=0)
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
args = parser.parse_args()
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
deepspeed_plugin = DeepSpeedPlugin(hf_ds_config='./ds_config_zero2.json')
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs], deepspeed_plugin=deepspeed_plugin, log_with='wandb')
accelerator.init_trackers(
project_name="Glucose",
config=args,
)
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.des, ii)
train_data, train_loader = data_provider(args, args.data_pretrain, args.data_path_pretrain, True, 'train')
vali_data, vali_loader = data_provider(args, args.data_pretrain, args.data_path_pretrain, True, 'val')
test_data, test_loader = data_provider(args, args.data_pretrain, args.data_path_pretrain, False, 'test')
if args.model == 'Autoformer':
model = Autoformer.Model(args).float()
elif args.model == 'DLinear':
model = DLinear.Model(args).float()
else:
model = TimeLLM.Model(args).float()
path = os.path.join(args.checkpoints,
setting + '-' + args.model_comment) # unique checkpoint saving path
args.content = load_content(args)
if not os.path.exists(path) and accelerator.is_local_main_process:
os.makedirs(path)
time_now = time.time()
train_steps = len(train_loader)
early_stopping = EarlyStopping(accelerator=accelerator, patience=args.patience)
trained_parameters = []
for p in model.parameters():
if p.requires_grad is True:
trained_parameters.append(p)
model_optim = optim.AdamW(trained_parameters, lr=args.learning_rate, weight_decay=1e-4)
if args.lradj == 'COS':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(model_optim, T_max=20, eta_min=1e-8)
else:
scheduler = lr_scheduler.OneCycleLR(optimizer=model_optim,
steps_per_epoch=train_steps,
pct_start=args.pct_start,
epochs=args.train_epochs,
max_lr=args.learning_rate)
criterion = nn.MSELoss()
mae_metric = nn.L1Loss()
train_loader, vali_loader, test_loader, model, model_optim, scheduler = accelerator.prepare(
train_loader, vali_loader, test_loader, model, model_optim, scheduler)
if args.use_amp:
scaler = torch.cuda.amp.GradScaler()
steps = 0
for epoch in range(args.train_epochs):
iter_count = 0
train_loss = []
model.train()
epoch_time = time.time()
for i, (data) in enumerate(train_loader):
if args.enable_covariates:
batch_x, batch_y, batch_x_mark, batch_y_mark = data[0]
batch_cov = data[1]
else:
batch_x, batch_y, batch_x_mark, batch_y_mark = data
batch_cov = None
iter_count += 1
steps += 1
model_optim.zero_grad()
batch_x = batch_x.float().to(accelerator.device)
batch_y = batch_y.float().to(accelerator.device)
batch_x_mark = batch_x_mark.float().to(accelerator.device)
batch_y_mark = batch_y_mark.float().to(accelerator.device)
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -args.pred_len:, :]).float().to(
accelerator.device)
dec_inp = torch.cat([batch_y[:, :args.label_len, :], dec_inp], dim=1).float().to(
accelerator.device)
# encoder - decoder
if args.use_amp:
with torch.cuda.amp.autocast():
if args.output_attention:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark, batch_cov)[0]
else:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark, batch_cov)
f_dim = -1 if args.features == 'MS' else 0
outputs = outputs[:, -args.pred_len:, f_dim:]
batch_y = batch_y[:, -args.pred_len:, f_dim:].to(accelerator.device)
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
else:
if args.output_attention:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark, covariates = batch_cov)[0]
else:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark, covariates = batch_cov)
f_dim = -1 if args.features == 'MS' else 0
outputs = outputs[:, -args.pred_len:, f_dim:]
batch_y = batch_y[:, -args.pred_len:, f_dim:]
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
if (i + 1) % 100 == 0:
accelerator.print(
"\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
speed = (time.time() - time_now) / iter_count
left_time = speed * ((args.train_epochs - epoch) * train_steps - i)
accelerator.print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
iter_count = 0
time_now = time.time()
accelerator.log({"Train Loss Per Step": loss.item()}, step = steps)
accelerator.log({"Learning Rate": model_optim.param_groups[0]['lr']}, step = steps)
accelerator.log({'Average Train Loss Per Step': np.average(train_loss)}, step = steps)
if args.use_amp:
scaler.scale(loss).backward()
scaler.step(model_optim)
scaler.update()
else:
accelerator.backward(loss)
model_optim.step()
if args.lradj == 'TST':
adjust_learning_rate(accelerator, model_optim, scheduler, epoch + 1, args, printout=False)
scheduler.step()
accelerator.print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
train_loss = np.average(train_loss)
accelerator.log({"Train Loss Per Epoch": train_loss}, step = epoch + 1)
vali_loss, vali_mae_loss = vali(args, accelerator, model, vali_data, vali_loader, criterion, mae_metric)
accelerator.log({"Vali Loss Per Epoch": vali_loss, "Vali MAE Loss Per Epoch": vali_mae_loss}, step = epoch + 1)
accelerator.print(
"Epoch: {0} | Train Loss: {1:.7f} Vali Loss: {2:.7f}".format(
epoch + 1, train_loss, vali_loss))
if epoch % 10 == 0:
test_loss, test_mae_loss = vali(args, accelerator, model, test_data, test_loader, criterion, mae_metric)
accelerator.print(
"Epoch: {0} | Train Loss: {1:.7f} Vali Loss: {2:.7f} Test Loss: {3:.7f} MAE Loss: {4:.7f}".format(
epoch + 1, train_loss, vali_loss, test_loss, test_mae_loss))
wandb.log({"Test Loss Per Epoch": test_loss, "Test MAE Loss Per Epoch": test_mae_loss}, step = epoch + 1)
early_stopping(vali_loss, model, path)
if early_stopping.early_stop:
accelerator.print("Early stopping")
break
if args.lradj != 'TST':
if args.lradj == 'COS':
scheduler.step()
accelerator.print("lr = {:.10f}".format(model_optim.param_groups[0]['lr']))
else:
if epoch == 0:
args.learning_rate = model_optim.param_groups[0]['lr']
accelerator.print("lr = {:.10f}".format(model_optim.param_groups[0]['lr']))
adjust_learning_rate(accelerator, model_optim, scheduler, epoch + 1, args, printout=True)
else:
accelerator.print('Updating learning rate to {}'.format(scheduler.get_last_lr()[0]))
accelerator.wait_for_everyone()
if accelerator.is_local_main_process:
path = './checkpoints' # unique checkpoint saving path
del_files(path) # delete checkpoint files
accelerator.print('success delete checkpoints')