$ git clone https://github.com/lixiny/ArtiBoost.git
$ cd ArtiBoost
$ conda env create -f environment.yml
$ conda activate artiboost
# inside your artiboost env
$ pip install -r requirements.txt
-
dex-ycb-toolkit
$ cd thirdparty $ git clone --recursive https://github.com/NVlabs/dex-ycb-toolkit.git
We need install dex-ycb-toolkit as a python package. Following the steps:
-
you need to install:
$ sudo apt-get install liboctomap-dev $ sudo apt-get install libfcl-dev # or delete the `python-fcl` in dex-ycb-toolkit/setup.py
-
create a
__init__.py
in dex_ycb_toolkit$ cd thirdparty/dex-ycb-toolkit/dex_ycb_toolkit/ $ touch __init__.py
-
change a line in
dex-ycb-toolkit/setup.py
:line #16: opencv-python ==> opencv-python-headless
finally, at the directory:
./thirdparty
, use pip install# inside your artiboost env $ pip install ./dex-ycb-toolkit
to verify:
$ python -c "from dex_ycb_toolkit.dex_ycb import DexYCBDataset, _YCB_CLASSES"
-
Download HO3D v2 and v3 from the official site. Then unzip and link the datasets in ./data
.
Now your ./data
folder should have structure like:
├── HO3D
│ ├── evaluation
│ ├── evaluation.txt
│ ├── train
│ └── train.txt
├── HO3D_v3
│ ├── calibration
│ ├── evaluation
│ ├── evaluation.txt
│ ├── manual_annotations
│ ├── train
│ └── train.txt
Download DexYCB dataset from the official site. Then unzip and link the dataset in ./data
.
Your ./data
folder should have structure like:
...
├── DexYCB
│ ├── 20200709-subject-01
│ ├── 20200813-subject-02
│ ├── 20200820-subject-03
│ ├── 20200903-subject-04
│ ├── 20200908-subject-05
│ ├── 20200918-subject-06
│ ├── 20200928-subject-07
│ ├── 20201002-subject-08
│ ├── 20201015-subject-09
│ ├── 20201022-subject-10
│ ├── bop
│ ├── calibration
│ └── models
Download our pre-processed YCB objects from:
then unzip and copy them to your ./data
.
Download our pre-process hand .obj with textures from:
(optional) Download HTML hand texture model from the official site.
then unzip and copy them into ./data
.
Finally, you will have ./data
with structure like:
├── DexYCB
├── HO3D
├── HO3D_v3
├── HTML_release
│ ├── HTML__hello_world.py
│ └── ...
├── HTML_supp
│ ├── html_001
│ ├── ...
│ ├── html.obj
│ └── html.obj.mtl
├── YCB_models_process
│ ├── 002_master_chef_can
│ └── ...
└── YCB_models_supp
├── 002_master_chef_can
└── ...
Data assets are essential for ArtiBoost training and evaluation.
Download the assets folder at 🔗 here and place it as ./assets
.
The ./assets
folder should contains:
-
GrabNet/
: GrabNet model's weights.
It is a copy of GrabNet model files/weights from GRAB [Taheri etal ECCV2020] -
hasson20_assets/
:
This folder contains essentials to run our honetMANO on FPHAB dataset.
It is a copy of assets folder in handobjectconsist [Hasson etal CVPR2020]. -
postprocess/
:
IKNet model's weights. Convert hand joints position to MANO rotations.
This checkpoints is trained in the original HandTailor [Lv etal BMVC2021] -
mano_v1_2/
: MANO hand model.
Download Models & Code at MANO website. Then unzip the downloaded file: mano_v1_2.zip. -
ho3d_corners.pkl
: HO3D object corner's annotation. -
extend_models_info.json
: YCB objects' principal axis of inertia.
For evaluating maximum symmetry-aware surface distance (MSSD).