-
Notifications
You must be signed in to change notification settings - Fork 60
/
process_data.py
256 lines (236 loc) · 9.19 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding: UTF-8
__author__ = 'lixin77'
from scrapy.selector import Selector
#import cPickle
import nltk
from nltk import word_tokenize
import sys
import string
def process_text(text):
"""
process the text and filter some special symbol
:param text:
:return:
"""
# string preprocessing and aspect term will not be processed
dot_exist = ('.' in text)
cur_text = text.replace('.', '')
#cur_text = cur_text.replace('-', ' ')
cur_text = cur_text.replace(' - ', ', ').strip()
cur_text = cur_text.replace('- ', ' ').strip()
# split words and punctuations
if '? ' not in cur_text:
cur_text = cur_text.replace('?', '? ').strip()
if '! ' not in cur_text:
cur_text = cur_text.replace('!', '! ').strip()
cur_text = cur_text.replace('(', '')
cur_text = cur_text.replace(')', '')
cur_text = cur_text.replace('...', ', ').strip('.').strip().strip(',')
# remove quote
cur_text = cur_text.replace('"', '')
cur_text = cur_text.replace(" '", " ")
cur_text = cur_text.replace("' ", " ")
cur_text = cur_text.replace(':', ', ')
if dot_exist:
cur_text += '.'
# correct some typos
# mainly for processing English texts
cur_text = cur_text.replace('cant', "can't")
cur_text = cur_text.replace('wouldnt', "wouldn't")
cur_text = cur_text.replace('dont', "don't")
cur_text = cur_text.replace('didnt', "didn't")
cur_text = cur_text.replace("you 're", "you're")
# replace some special symbol
cur_text = cur_text.replace(u' – ', ', ').strip()
cur_text = cur_text.replace(u"‘", "")
# filter the non-ascii character
cur_text = ''.join([ch if ord(ch) < 128 else ' ' for ch in cur_text])
return cur_text
def extract_aspect(aspects, text, dataset_name):
"""
extract aspects from xml tags
:param aspects: a list of aspect tags / selectors
:param text: corresponding sentence
:param dataset_name: name of dataset
:return:
"""
counter = 0
# mapping between aspect id and aspect name
id2aspect = {}
# mapping between aspect id and the sentiment polarity of the aspect
id2polarity = {}
# number of aspects, singleton, multi-word-aspects in the sentence, respectively
n_aspect, n_singleton, n_mult_word = 0, 0, 0
cur_text = text
from_to_pairs = []
for t in aspects:
_from = int(t.xpath('.//@from').extract()[0])
_to = int(t.xpath('.//@to').extract()[0])
if _from == 0 and _to == 0:
# NULL target
continue
if not '14' in dataset_name:
target = t.xpath('.//@target').extract()[0].replace(u'\xa0', ' ')
else:
target = t.xpath('.//@term').extract()[0].replace(u'\xa0', ' ')
if target == 'NULL':
# there is no aspect in the text
continue
# for SemEval challenge, polarity can be positive, negative or neutral
polarity = t.xpath('.//@polarity').extract()[0]
if polarity == 'positive':
pol_val = 'POS'
elif polarity == 'negative':
pol_val = 'NEG'
elif polarity == 'neutral':
pol_val = 'NEU'
elif polarity == 'conflict':
# ignore the confilct aspects
continue
else:
raise Exception("Invalid polarity value #%s#" % polarity)
flag = False
# remove special symbol in aspect term
#if 'english' in dataset_name:
target = target.replace(u'é', 'e')
target = target.replace(u'’', "'")
if text[_from:_to] == target:
flag = True
elif (_from - 1 >= 0) and text[(_from - 1):(_to - 1)] == target:
_from -= 1
_to -= 1
flag = True
elif (_to + 1 < len(text)) and text[(_from + 1):(_to + 1)] == target:
_from += 1
_to += 1
flag = True
# we can find the aspect in the raw text
assert flag
if (_from, _to) in from_to_pairs:
continue
aspect_temp_value = 'ASPECT%s' % counter
counter += 1
id2aspect[aspect_temp_value] = target
id2polarity[aspect_temp_value] = pol_val
cur_text = cur_text.replace(target, aspect_temp_value)
from_to_pairs.append((_from, _to))
n_aspect += 1
if len(target.split()) > 1:
n_mult_word += 1
else:
n_singleton += 1
return id2aspect, id2polarity, n_aspect, n_singleton, n_mult_word, cur_text
def format_output(x, y, text):
"""
format the dataset output
:param x: word sequence
:param y: tag sequence
:param text: raw text
:return:
"""
tag_sequence = ''
for i in range(len(x)):
if i == (len(x) - 1):
tag_sequence = '%s%s=%s' % (tag_sequence, x[i], y[i])
else:
tag_sequence = '%s%s=%s ' % (tag_sequence, x[i], y[i])
data_line = '%s####%s\n' % (text, tag_sequence)
#print(data_line)
return data_line
def extract_text(dataset_name):
"""
extract textual information from the xml file
:param dataset_name: dataset name
"""
delset = string.punctuation
fpath = './raw_data/%s.xml' % dataset_name
print("Process %s..." % fpath)
page_source = ''
with open(fpath) as fp:
for line in fp:
page_source = '%s%s' % (page_source, line.strip())
reviews = []
# regard one sentence as an example
sentences = Selector(text=page_source).xpath('//sentences/sentence')
reviews = [sentences]
n_sen = 0
n_word = 0
# number of aspects, singletons and multi-words in the dataset, respectively
n_aspect, n_singleton, n_mult_word = 0, 0, 0
n_sen_with_no_aspect = 0
lines = []
for sentences in reviews:
# scan all of the reviews
x, y, review_text = [], [], ''
for sid in range(len(sentences)):
sen = sentences[sid]
prev = ''
n_sen += 1
text = sen.xpath('.//text/text()').extract()[0]
text = text.replace(u'\xa0', ' ')
# note: preprocessing in the raw text should not change the index
# perform this only for English texts
# in spanish, it can be a normal word
text = text.replace(u'é', 'e')
text = text.replace(u'’', "'")
cur_text = text
assert isinstance(dataset_name, str)
if '14' in dataset_name:
aspects = sen.xpath('.//aspectterms/aspectterm')
else:
aspects = sen.xpath('.//opinions/opinion')
if not aspects:
# sent with no aspect
n_sen_with_no_aspect += 1
else:
id2aspect, id2polarity, n_a, n_s, n_m, cur_text = extract_aspect(aspects=aspects, text=cur_text,
dataset_name=dataset_name)
n_aspect += n_a
n_singleton += n_s
n_mult_word += n_m
# flush output buffer every sentence
x, y = [], []
# process the text and filter the unnecessary characters
cur_text = process_text(text=cur_text)
tokens = word_tokenize(cur_text)
for t in tokens:
if t.startswith('ASPECT'):
# in this case, t is actually the id of aspect
# raw_string is the aspect word or aspect phrase
raw_string = id2aspect[t[:7]]
pol_val = id2polarity[t[:7]]
aspect_words = raw_string.split()
n_aw = len(aspect_words)
x.extend(aspect_words)
y.extend(['T-%s' % pol_val] * n_aw)
n_word += n_aw
else:
# t is the literal value
if not t.strip() == '':
# t is not blank space or empty string
x.append(t.strip())
y.append('O')
n_word += 1
# length check for every sentence
assert len(x) == len(y)
# write back after processing a sentence
lines.append(format_output(x=x, y=y, text=text))
with open('./data/%s.txt' % (dataset_name), 'w+') as fp:
fp.writelines(lines)
print("dataset:", dataset_name)
print("n_sen:", n_sen)
print("average length:", int(n_word / n_sen))
print("total aspects:", n_aspect)
print("n_singleton:", n_singleton)
print("n_mult_words:", n_mult_word)
print("n_without_aspect:", n_sen_with_no_aspect)
print("n_tokens:", n_word)
print("\n\n")
if __name__ == '__main__':
# this script is used for converting the original xml files into the formatted files
dataset_names = ['laptop14_train', 'laptop14_test',
'rest14_train', 'rest14_test',
'rest15_train', 'rest15_test', 'hotel15_test',
'rest16_train', 'rest16_test']
for ds_name in dataset_names:
extract_text(ds_name)