From 463316db6dabf6e50635cc23459e4728f61c4532 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?The=CC=81o=20Monnom?= Date: Tue, 6 Feb 2024 18:38:09 +0100 Subject: [PATCH] revert face_landmark.py changes --- examples/face_landmark/face_landmark.py | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) diff --git a/examples/face_landmark/face_landmark.py b/examples/face_landmark/face_landmark.py index a72b7bd1..b61d8169 100644 --- a/examples/face_landmark/face_landmark.py +++ b/examples/face_landmark/face_landmark.py @@ -15,6 +15,20 @@ tasks = set() +# You can download a face landmark model file from https://developers.google.com/mediapipe/solutions/vision/face_landmarker#models +model_file = "face_landmarker.task" +model_path = os.path.dirname(os.path.realpath(__file__)) + "/" + model_file + +BaseOptions = mp.tasks.BaseOptions +FaceLandmarker = mp.tasks.vision.FaceLandmarker +FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions +VisionRunningMode = mp.tasks.vision.RunningMode + +options = FaceLandmarkerOptions( + base_options=BaseOptions(model_asset_path=model_path), + running_mode=VisionRunningMode.VIDEO, +) + async def main(room: rtc.Room) -> None: video_stream = None @@ -97,11 +111,19 @@ async def frame_loop(video_stream: rtc.VideoStream) -> None: arr = np.frombuffer(buffer.data, dtype=np.uint8) arr = arr.reshape((buffer.height, buffer.width, 3)) + mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=arr) + detection_result = landmarker.detect_for_video( + mp_image, frame_event.timestamp_us + ) + + draw_landmarks_on_image(arr, detection_result) + arr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR) cv2.imshow("livekit_video", arr) if cv2.waitKey(1) & 0xFF == ord("q"): break + landmarker.close() cv2.destroyAllWindows()