From b5c7b1303831eace5edbd6290deaed511baa91a5 Mon Sep 17 00:00:00 2001 From: Liu Liu Date: Thu, 21 Dec 2023 15:15:48 -0500 Subject: [PATCH] Expose RMSNorm and cmul. --- WORKSPACE | 4 +-- deps.bzl | 4 +-- nnc/FunctionalAddons.swift | 13 ++++++++ nnc/ModelAddons.swift | 63 ++++++++++++++++++++++++++++++++++++++ 4 files changed, 80 insertions(+), 4 deletions(-) diff --git a/WORKSPACE b/WORKSPACE index 17492be2b76..18971b7e3de 100644 --- a/WORKSPACE +++ b/WORKSPACE @@ -5,9 +5,9 @@ load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") git_repository( name = "ccv", - commit = "bb296cdcca8a6dca24934b675c3dd7bd12278245", + commit = "ff47b596600c501d1e6d7070a5e6454a90dce1be", remote = "https://github.com/liuliu/ccv.git", - shallow_since = "1703102984 -0500", + shallow_since = "1703182006 -0500", ) load("@ccv//config:ccv.bzl", "ccv_deps", "ccv_setting") diff --git a/deps.bzl b/deps.bzl index f0990100ba8..14864fdf2a9 100644 --- a/deps.bzl +++ b/deps.bzl @@ -17,8 +17,8 @@ def s4nnc_deps(): git_repository, name = "ccv", remote = "https://github.com/liuliu/ccv.git", - commit = "bb296cdcca8a6dca24934b675c3dd7bd12278245", - shallow_since = "1703102984 -0500", + commit = "ff47b596600c501d1e6d7070a5e6454a90dce1be", + shallow_since = "1703182006 -0500", ) _maybe( diff --git a/nnc/FunctionalAddons.swift b/nnc/FunctionalAddons.swift index 243622faae7..6917d331897 100644 --- a/nnc/FunctionalAddons.swift +++ b/nnc/FunctionalAddons.swift @@ -308,6 +308,19 @@ extension Functional { return T(outputs[0]) } + /// Complex number multiplication + public static func cmul( + left: T, right: T, streamContext: StreamContext? = nil + ) -> T { + var params = CmdParamsFactory.factory.newParams() + params.size.dim = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) + let cmd = ccv_nnc_cmd(CCV_NNC_CMUL_FORWARD, nil, params, 0) + let outputs = exec( + cmd: cmd, hint: ccv_nnc_no_hint, inputs: left, right, outputSize: 1, + streamContext: streamContext) + return T(outputs[0]) + } + /// Make a copy. public static func copy( from: T, to: T, streamContext: StreamContext? = nil diff --git a/nnc/ModelAddons.swift b/nnc/ModelAddons.swift index 3cbd14cc23e..f3680421647 100644 --- a/nnc/ModelAddons.swift +++ b/nnc/ModelAddons.swift @@ -56,6 +56,14 @@ public final class Mul: Model { } } +extension Functional { + public static func mul(left: ModelIOConvertible, right: ModelIOConvertible, scalar: Float) + -> Model.IO + { + return Mul(scalar: scalar)(left, right) + } +} + /// Div two inputs together. It will not do broadcast. public final class Div: Model { required init(_ model: OpaquePointer) { @@ -130,6 +138,39 @@ public final class Matmul: Model { } } +extension Functional { + public static func matmul( + left: ModelIOConvertible, right: ModelIOConvertible, leftTranspose: (Int, Int), + rightTranspose: (Int, Int) + ) -> Model.IO { + return Matmul(transposeA: leftTranspose, transposeB: rightTranspose)(left, right) + } +} + +/// Comlex number multiplication over two inputs. +public final class Cmul: Model { + required init(_ model: OpaquePointer) { + super.init(model) + } + + public init(name: String = "") { + super.init(ccv_cnnp_cmul(name)) + } + + public func callAsFunction( + _ left: T, _ right: T, streamContext: StreamContext? = nil + ) -> T { + let outputs = self(inputs: left, right, streamContext: streamContext) + return T(outputs[0]) + } +} + +extension Functional { + public static func cmul(left: ModelIOConvertible, right: ModelIOConvertible) -> Model.IO { + return Cmul()(left, right) + } +} + /// A linear layer model. public final class Dense: Model { required init(_ model: OpaquePointer) { @@ -605,6 +646,28 @@ public final class GroupNorm: Model { } } +/// RMSNorm model. +public final class RMSNorm: Model { + required init(_ model: OpaquePointer) { + super.init(model) + } + + public init(epsilon: Float, axis: [Int], trainable: Bool? = nil, name: String = "") { + let axis32: [Int32] = axis.map { Int32($0) } + super.init( + ccv_cnnp_rmsnorm( + epsilon, axis32, Int32(axis.count), trainable == true ? 1 : (trainable == false ? 0 : -1), + name)) + } + + public func callAsFunction( + _ input: T, streamContext: StreamContext? = nil + ) -> T { + let outputs = self(inputs: input, streamContext: streamContext) + return T(outputs[0]) + } +} + /// Make the input tensor to be 1-D tensor (respecting N). public final class Flatten: Model { required init(_ model: OpaquePointer) {