forked from NVIDIA/Deep-Learning-Accelerator-SW
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GRU.py
503 lines (467 loc) · 24.3 KB
/
GRU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#
# SPDX-FileCopyrightText: Copyright (c) 2022 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
"""Reconstruction of a GRU op."""
from logging import info
import onnx_graphsurgeon as gs
import onnx
from common.Operator import Operator
from common.onnxruntime_utils import ONNXRUNTIME_DT_TO_NUMPY_DT
import onnxruntime
import numpy as np
NUM_DIRECTIONS_DICT = dict(forward=1, reverse=1, bidirectional=2)
class GRU(Operator):
def generate(self, input_shapes, attrs, use_bias=False, use_initial_h=True):
if not isinstance(input_shapes, list):
input_shapes = [input_shapes]
assert len(input_shapes) in {1, 2}
assert len(input_shapes[0]) == 3
assert attrs.get('layout', 0) == 1
batch_size, seq_length, input_size = input_shapes[0]
dtype = np.float32
inputs = list()
hidden_size = attrs.get('hidden_size', 1)
direction = attrs.get('direction', 'forward')
assert direction in {'forward'}
num_directions = NUM_DIRECTIONS_DICT[direction]
X = gs.Variable(name=self.new_tensor_name(), dtype=dtype, shape=input_shapes[0])
W_shape = [num_directions, 3 * hidden_size, input_size]
W = gs.Constant(name=self.new_tensor_name(), values=np.random.rand(*W_shape).astype(dtype))
R_shape = [num_directions, 3 * hidden_size, hidden_size]
R = gs.Constant(name=self.new_tensor_name(), values=np.random.rand(*R_shape).astype(dtype))
inputs = [X, W, R]
if use_bias:
B = gs.Constant(name=self.new_tensor_name(),
values=np.random.rand(num_directions, 6 * hidden_size).astype(dtype))
inputs += [B]
if use_initial_h:
if not use_bias:
B = gs.Constant(name=self.new_tensor_name(),
values=np.zeros([num_directions, 6 * hidden_size], dtype=dtype))
inputs += [B]
sequence_lens = gs.Constant(name=self.new_tensor_name(),
values=np.array([seq_length] * batch_size, dtype=np.int32))
initial_h_shape = [batch_size, num_directions, hidden_size]
initial_h = gs.Variable(name=self.new_tensor_name(),
dtype=dtype,
shape=initial_h_shape)
inputs += [sequence_lens, initial_h]
outputs = [
gs.Variable(name='', dtype=dtype),
gs.Variable(name=self.new_tensor_name(), dtype=dtype)
]
activations = attrs.get('activations', list())
if len(activations) > 0:
assert len(activations) == 2 # would be 4 for bidirectional
attrs['activations'] = activations
node = gs.Node(op=self.op,
inputs=inputs,
outputs=outputs,
attrs=attrs,
name=self.new_node_name())
graph_inputs = [inp for inp in node.inputs if not isinstance(inp, gs.Constant)]
graph = gs.Graph(nodes=[node],
inputs=graph_inputs,
outputs=[node.outputs[-1]],
name=node.name)
graph.name = f'{self.op}_bias{int(use_bias)}_initialh{int(use_initial_h)}_orig'
return graph
@staticmethod
def from2dto4d(data):
return np.expand_dims(data, [-2, -1])
@staticmethod
def add_gru_conv(graph, var_input, prefix, conv_wt_vals, conv_bias_vals, index, dtype):
assert isinstance(var_input, gs.Variable)
conv_out = gs.Variable(name=prefix, dtype=dtype)
conv_Wt = gs.Constant(name=f'{prefix}_wt', values=np.copy(conv_wt_vals[index]))
inputs = [var_input, conv_Wt]
if conv_bias_vals[index] is not None:
inputs.append(gs.Constant(name=f'{prefix}_bias',
values=np.copy(conv_bias_vals[index])))
conv = gs.Node(op='Conv', inputs=inputs, outputs=[conv_out], name=conv_out.name)
graph.nodes.append(conv)
return conv_out
@staticmethod
def add_gru_bias(conv_node, conv_bias_vals, index):
if len(conv_node.inputs) < 3:
return
bias = conv_node.inputs[2]
if conv_bias_vals[index] is not None:
bias.values += conv_bias_vals[index]
@staticmethod
def add_gru_elementwise(graph, ew_op, var_inputs, prefix, dtype, ew_out=None):
assert isinstance(var_inputs, list)
ew_out = ew_out or gs.Variable(name=prefix, dtype=dtype)
ew = gs.Node(op=ew_op, inputs=var_inputs, outputs=[ew_out], name=ew_out.name)
graph.nodes.append(ew)
return ew_out
@staticmethod
def add_gru_act(graph, act_op, var_input, prefix, dtype):
assert isinstance(var_input, gs.Variable)
act_out = gs.Variable(name=prefix, dtype=dtype)
act = gs.Node(op=act_op, inputs=[var_input], outputs=[act_out], name=act_out.name)
graph.nodes.append(act)
return act_out
@staticmethod
def add_gru_transpose(graph, var_input, perm, prefix, dtype):
transpose_out = gs.Variable(name=prefix, dtype=dtype)
transpose = gs.Node(op='Transpose',
inputs=[var_input],
outputs=[transpose_out],
attrs=dict(perm=perm),
name=transpose_out.name)
graph.nodes.append(transpose)
return transpose_out
@staticmethod
def add_gru_slice(graph, slice_channel_idx, slice_axis, var_input, prefix, dtype):
assert isinstance(var_input, gs.Variable)
slice_out = gs.Variable(name=prefix, dtype=dtype)
starts = gs.Constant(name=f'{prefix}_starts',
values=np.array([slice_channel_idx], dtype=np.int64))
ends = gs.Constant(name=f'{prefix}_ends',
values=np.array([slice_channel_idx + 1], dtype=np.int64))
axes = gs.Constant(name=f'{prefix}_axes', values=np.array([slice_axis], dtype=np.int64))
steps = gs.Constant(name=f'{prefix}_steps', values=np.array([1], dtype=np.int64))
slice = gs.Node(op='Slice',
inputs=[var_input, starts, ends, axes, steps],
outputs=[slice_out],
name=slice_out.name)
graph.nodes.append(slice)
return slice_out
@staticmethod
def add_gru_const_op(graph, const_op, var_input, const_vals, prefix, dtype):
assert isinstance(var_input, gs.Variable)
assert isinstance(const_vals, np.ndarray)
op_out = gs.Variable(name=prefix, dtype=dtype)
const_vals = const_vals.reshape(1, -1, 1, 1)
const_input = gs.Constant(name=f'{prefix}_const', values=const_vals.astype(dtype))
op = gs.Node(op=const_op,
inputs=[var_input, const_input],
outputs=[op_out],
name=op_out.name)
graph.nodes.append(op)
return op_out
@staticmethod
def reconstruct_step(graph, node, step_idx, total_steps, X_slice, Ht_prev, W_vals, Wb_vals,
R_vals, Rb_vals, f, g, dtype, linear_before_reset):
zt_index_W = 0
zt_index_R = 0
rt_index_W = 1
rt_index_R = 1
ht_index_W = 2
ht_index_R = 2
base_prefix = f'{node.name}_step{step_idx}'
last_out = node.outputs[-1] if step_idx == total_steps - 1 else None
if Ht_prev is not None:
# zt = f(Xt*(Wz^T) + Ht-1*(Rz^T) + Wbz + Rbz)
zt_X_out = GRU.add_gru_conv(graph, X_slice, f'{base_prefix}_zt_X', W_vals, Wb_vals,
zt_index_W, dtype)
zt_Ht_out = GRU.add_gru_conv(graph, Ht_prev, f'{base_prefix}_zt_Ht-1', R_vals, Rb_vals,
zt_index_R, dtype)
zt_add_out = GRU.add_gru_elementwise(graph, 'Add', [zt_X_out, zt_Ht_out],
f'{base_prefix}_zt_add', dtype)
zt_act_out = GRU.add_gru_act(graph, f, zt_add_out, f'{base_prefix}_zt_act_f', dtype)
# rt = f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr)
rt_X_out = GRU.add_gru_conv(graph, X_slice, f'{base_prefix}_rt_X', W_vals, Wb_vals,
rt_index_W, dtype)
rt_Ht_out = GRU.add_gru_conv(graph, Ht_prev, f'{base_prefix}_rt_Ht-1', R_vals, Rb_vals,
rt_index_R, dtype)
rt_add_out = GRU.add_gru_elementwise(graph, 'Add', [rt_X_out, rt_Ht_out],
f'{base_prefix}_rt_add', dtype)
rt_act_out = GRU.add_gru_act(graph, f, rt_add_out, f'{base_prefix}_rt_act_f', dtype)
# Xt*(Wh^T)
ht_X_out = GRU.add_gru_conv(graph, X_slice, f'{base_prefix}_X_ht', W_vals, Wb_vals,
ht_index_W, dtype)
# (rt (.) Ht-1)
ht_mul_out = GRU.add_gru_elementwise(graph, 'Mul', [rt_act_out, Ht_prev],
f'{base_prefix}_Ht_mul', dtype)
# (rt (.) Ht-1)*(Rh^T)
ht_Ht_out = GRU.add_gru_conv(graph, ht_mul_out, f'{base_prefix}_Ht', R_vals, Rb_vals,
ht_index_R, dtype)
# Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh
X_Ht_add_out = GRU.add_gru_elementwise(graph, 'Add', [ht_Ht_out, ht_X_out],
f'{base_prefix}_X_Ht_add', dtype)
# linear_before_reset = 0: ht = g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh)
X_Ht_act_out = GRU.add_gru_act(graph, g, X_Ht_add_out, f'{base_prefix}_X_Ht_g', dtype)
# linear_before_reset != 0: ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh)
# h_default = self.g(np.dot(x, np.transpose(w_h)) + np.dot(r * H_t, np.transpose(r_h)) + w_bh + r_bh)
# h_linear = self.g(np.dot(x, np.transpose(w_h)) + r * (np.dot(H_t, np.transpose(r_h)) + r_bh) + w_bh)
# h = h_linear if self.LBR else h_default
# (1 - zt)
zt_sub_out = GRU.add_gru_const_op(graph, 'Add', zt_act_out, np.array([-1]),
f'{base_prefix}_zt_const_add', dtype)
zt_mul_out = GRU.add_gru_const_op(graph, 'Mul', zt_sub_out, np.array([-1]),
f'{base_prefix}_zt_const_mul', dtype)
# (1 - zt) (.) ht
zt_mul0_out = GRU.add_gru_elementwise(graph, 'Mul', [zt_mul_out, X_Ht_act_out],
f'{base_prefix}_zt_mul0', dtype)
# zt (.) Ht-1
zt_mul1_out = GRU.add_gru_elementwise(graph, 'Mul', [zt_act_out, Ht_prev],
f'{base_prefix}_zt_mul1', dtype)
# Ht = (1 - zt) (.) ht + zt (.) Ht-1
out = GRU.add_gru_elementwise(graph,
'Add', [zt_mul0_out, zt_mul1_out],
f'{base_prefix}_out',
dtype,
ew_out=last_out)
else:
# zt = f(Xt*(Wz^T) + Wbz + Rbz)
zt_X_out = GRU.add_gru_conv(graph, X_slice, f'{base_prefix}_zt_X', W_vals, Wb_vals,
zt_index_W, dtype)
GRU.add_gru_bias(graph.nodes[-1], Rb_vals, zt_index_R)
zt_act_out = GRU.add_gru_act(graph, f, zt_X_out, f'{base_prefix}_zt_act_f', dtype)
# Xt*(Wh^T)
ht_X_out = GRU.add_gru_conv(graph, X_slice, f'{base_prefix}_X_ht', W_vals, Wb_vals,
ht_index_W, dtype)
GRU.add_gru_bias(graph.nodes[-1], Rb_vals, ht_index_R)
# ht = g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh)
Ht_act_out = GRU.add_gru_act(graph, g, ht_X_out, f'{base_prefix}_X_Ht_g', dtype)
# (1 - zt)
zt_sub_out = GRU.add_gru_const_op(graph, 'Add', zt_act_out, np.array([-1]),
f'{base_prefix}_zt_const_add', dtype)
zt_mul_out = GRU.add_gru_const_op(graph, 'Mul', zt_sub_out, np.array([-1]),
f'{base_prefix}_zt_const_mul', dtype)
# (1 - zt) (.) ht
out = GRU.add_gru_elementwise(graph,
'Mul', [zt_mul_out, Ht_act_out],
f'{base_prefix}_zt_mul0',
dtype,
ew_out=last_out)
return out
@staticmethod
def qualifies_for_reconstruction(node):
result = node.op == 'GRU'
SUPPORTED_GRU_ACTIVATIONS = {'Sigmoid', 'Tanh', 'Relu'}
SUPPORTED_GRU_DIRECTIONS = {'forward'}
if result:
attrs = node.attrs
result &= attrs.get('layout', 0) == 1
result &= attrs.get('linear_before_reset', 0) == 0
result &= attrs.get('direction', 'forward') in SUPPORTED_GRU_DIRECTIONS
result &= attrs.get('activation_alpha', None) is None
result &= attrs.get('activation_beta', None) is None
result &= attrs.get('clip', None) is None
activations = attrs.get('activations', ['Sigmoid', 'Tanh'])
result &= len(activations) == 2
if result:
f, g = activations
result &= f in SUPPORTED_GRU_ACTIVATIONS
result &= g in SUPPORTED_GRU_ACTIVATIONS
return result
@staticmethod
def reconstruct(node, graph):
if GRU.qualifies_for_reconstruction(node):
info(f'Reconstructing {node.op} node "{node.name}"...')
X, W, R = node.inputs[:3]
batch_size, seq_length, input_size = X.shape
dtype = X.dtype
attrs = node.attrs
hidden_size = attrs['hidden_size']
direction = attrs.get('direction', 'forward')
activations = attrs.get('activations', ['Sigmoid', 'Tanh'])
linear_before_reset = attrs.get('linear_before_reset', 0) == 1
f, g = activations
num_directions = NUM_DIRECTIONS_DICT[direction]
Ht_prev_shape = [batch_size, hidden_size, num_directions, 1]
Ht_prev = None
if len(node.inputs) > 5:
Ht_prev = node.inputs[5]
Ht_prev.shape = Ht_prev_shape
assert isinstance(W, gs.Constant)
W_vals = [
GRU.from2dto4d(W.values[0, x * hidden_size:(x + 1) * hidden_size])
for x in range(3)
]
assert isinstance(R, gs.Constant)
R_vals = [
GRU.from2dto4d(R.values[0, x * hidden_size:(x + 1) * hidden_size])
for x in range(3)
]
Wb_vals = [None, None, None]
Rb_vals = [None, None, None]
if len(node.inputs) > 3:
assert isinstance(node.inputs[3], gs.Constant)
B_vals = node.inputs[3].values
B_dims = B_vals.shape
assert B_dims[0] == 1
cutoff = B_dims[1] // 6
vals = [B_vals[0, x * cutoff:(x + 1) * cutoff] for x in range(6)]
Wb_vals = vals[:3]
Rb_vals = vals[3:]
if seq_length == 1:
X.shape = [batch_size, input_size, 1, 1]
out = GRU.reconstruct_step(graph, node, 0, seq_length, X, Ht_prev, W_vals, Wb_vals,
R_vals, Rb_vals, f, g, dtype, linear_before_reset)
else:
X.shape = [batch_size, seq_length, input_size, 1]
X_transposed = GRU.add_gru_transpose(graph, X, (0, 2, 1, 3),
f'{node.name}_transpose_in', dtype)
for step_idx in range(seq_length):
X_slice = GRU.add_gru_slice(graph, step_idx, 2, X_transposed,
f'{node.name}_slice{step_idx}', dtype)
Ht_prev = GRU.reconstruct_step(graph, node, step_idx, seq_length, X_slice,
Ht_prev, W_vals, Wb_vals, R_vals, Rb_vals, f, g,
dtype, linear_before_reset)
out = Ht_prev
node.inputs.clear()
node.outputs.clear()
graph.cleanup().toposort()
@staticmethod
def onnx_inference(session, input_data, prev_output, reshape_input_dims=None):
if not isinstance(input_data, list):
input_data = [input_data]
session_inputs = session.get_inputs()
if reshape_input_dims is not None:
input_data[0] = np.reshape(input_data, reshape_input_dims)
if len(session_inputs) == 2:
input_data = [input_data[0], prev_output]
assert len(session_inputs) == len(
input_data), f'{len(session_inputs)} != {len(input_data)}'
input_dict = dict()
for tensor, data in zip(session_inputs, input_data):
assert tensor.type in ONNXRUNTIME_DT_TO_NUMPY_DT, 'No mapping from ONNX RT to NumPy data type detected, you may need to extend it'
dtype = ONNXRUNTIME_DT_TO_NUMPY_DT[tensor.type]
if data is None:
data = np.zeros(tensor.shape)
input_dict[tensor.name] = data.astype(dtype)
output_names = [out.name for out in session.get_outputs()]
outputs = session.run(output_names, input_dict)
return outputs
@staticmethod
def insert_transpose(graph, node, input_direction=True):
perm = (1, 0, 2)
tensors = node.inputs if input_direction else node.outputs
for idx, tensor in enumerate(tensors):
if not isinstance(tensor, gs.Constant):
transpose_name = f'{tensor.name}_transpose'
transpose_tmp = gs.Variable(name=transpose_name, dtype=tensor.dtype)
if input_direction:
node_inputs = [tensor]
node_outputs = [transpose_tmp]
node.inputs[idx] = transpose_tmp
else:
node_inputs = [transpose_tmp]
node_outputs = [tensor]
node.outputs[idx] = transpose_tmp
transpose_node = gs.Node(op='Transpose',
attrs=dict(perm=perm),
name=transpose_name,
inputs=node_inputs,
outputs=node_outputs)
graph.nodes.append(transpose_node)
@staticmethod
def patch_gru_layout(onnx_path_orig):
# layout 1 is not supported in ONNX Runtime on CPU yet:
# initialization: /Users/runner/work/1/s/onnxruntime/core/providers/cpu/rnn/deep_cpu_gru.h:55 onnxruntime::DeepCpuGruOp::DeepCpuGruOp(const onnxruntime::OpKernelInfo &) layout_ == 0 was false. Batchwise recurrent operations (layout == 1) are not supported. If you need support create a github issue with justification
graph = gs.import_onnx(onnx.load(onnx_path_orig))
patched = False
patched_path = onnx_path_orig
for node in graph.nodes:
if node.op == 'GRU' and node.attrs.get('layout', 0) == 1:
node.attrs['layout'] = 0
GRU.insert_transpose(graph, node, input_direction=True)
GRU.insert_transpose(graph, node, input_direction=False)
patched = True
if patched:
graph.cleanup().toposort()
patched_path = 'tmp.onnx'
onnx.save(gs.export_onnx(graph), patched_path)
return patched_path
def run_comparison(self,
onnx_paths,
input_shapes=None,
incremental_vals=False,
input_data=None,
num_iterations=3,
index_reconstructed=-1):
assert len(onnx_paths) == 2
self.verify_reconstruction(onnx_paths[index_reconstructed][0])
if input_data is None:
assert input_shapes is not None
if incremental_vals:
input_data = [
np.arange(np.product(shape), dtype=np.float32).reshape(shape)
for shape in input_shapes
]
else:
input_data = [np.random.rand(*shape).astype(np.float32) for shape in input_shapes]
else:
assert not incremental_vals
assert input_shapes is None
index_orig = index_reconstructed - 1
onnx_paths[index_orig] = list(onnx_paths[index_orig])
onnx_paths[index_orig][0] = GRU.patch_gru_layout(onnx_paths[index_orig][0])
session_outputs = list()
for onnx_file, reshape_input_dims in onnx_paths:
session = onnxruntime.InferenceSession(onnx_file)
prev_output = None
iteration_outputs = list()
for _ in range(num_iterations):
session_output = GRU.onnx_inference(session, input_data, prev_output,
reshape_input_dims)
prev_output = session_output[0]
iteration_outputs.append(prev_output)
session_outputs.append(iteration_outputs)
for iteration in range(num_iterations):
maxabsdiff = np.abs(session_outputs[0][iteration].flatten().astype(np.float32) -
session_outputs[1][iteration].flatten().astype(np.float32)).max()
info(
f'Max absdiff between {onnx_paths[0]} and {onnx_paths[1]} after {num_iterations} iterations: {maxabsdiff}'
)
return maxabsdiff
def test_config(self,
input_shapes=None,
hidden_size=None,
num_iterations=None,
use_bias=False,
use_initial_h=True,
linear_before_reset=0,
layout=1):
attrs = dict(hidden_size=hidden_size,
linear_before_reset=linear_before_reset,
layout=layout)
orig_graph = self.generate(input_shapes,
attrs,
use_bias=use_bias,
use_initial_h=use_initial_h)
orig_path = Operator.save_gs_graph(orig_graph, run_shape_inference=True, opset=14)
reconstructed_graph = gs.import_onnx(onnx.load(orig_path))
for node in reconstructed_graph.nodes:
self.reconstruct(node, reconstructed_graph)
reconstructed_graph.name = orig_graph.name.replace('_orig', '_reconstructed')
reconstructed_path = GRU.save_gs_graph(reconstructed_graph, run_shape_inference=True)
reconstructed_input_shape = reconstructed_graph.inputs[0].shape
maxabsdiff = self.run_comparison([(orig_path, None),
(reconstructed_path, reconstructed_input_shape)],
input_shapes=input_shapes,
num_iterations=num_iterations)
return maxabsdiff
def test(self, input_shapes=None, hidden_size=None, num_iterations=None):
input_shapes = input_shapes or [(2, 4, 3)]
hidden_size = hidden_size or 5
num_iterations = num_iterations or 2
maxabsdiff = 0.0
for use_bias in [False, True]:
for use_initial_h in [False, True]:
maxabsdiff = max(
maxabsdiff,
self.test_config(input_shapes=input_shapes,
hidden_size=hidden_size,
num_iterations=num_iterations,
use_bias=use_bias,
use_initial_h=use_initial_h))
return maxabsdiff
def main():
op = GRU()
num_iterations = 3
op.test(num_iterations=num_iterations)
if __name__ == '__main__':
main()