-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
154 lines (127 loc) · 6.66 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import os,sys
import numpy as np
import tensorflow as tf
from glob import glob
from tqdm import tqdm
import re
import csv
from collections import OrderedDict
import os
from Common import loss_utils
from Common import pc_util
from Common.pc_util import load, save_ply_property,get_pairwise_distance
from Common.ops import normalize_point_cloud
from Common.utils import AverageMeter
sys.path.append(os.path.join(os.getcwd(),"tf_ops/sampling"))
sys.path.append(os.path.join(os.getcwd(),"tf_ops/nn_distance"))
sys.path.append(os.path.join(os.getcwd(),"tf_ops/approxmatch"))
sys.path.append(os.path.join(os.getcwd(),"tf_ops/grouping"))
import tf_nndistance
from sklearn.neighbors import NearestNeighbors
import math
from time import time
# parser = argparse.ArgumentParser()
# parser.add_argument("--pred", type=str, required=True, help=".xyz")
# parser.add_argument("--gt", type=str, required=True, help=".xyz")
# FLAGS = parser.parse_args()
# PRED_DIR = os.path.abspath(FLAGS.pred)
# GT_DIR = os.path.abspath(FLAGS.gt)
# print(PRED_DIR)
# NAME = FLAGS.name
#print(GT_DIR)
root = os.path.join("/home/lirh/pointcloud/InvertPoint_tf/experiments/new")
num_point = 2048
pred_tensor = tf.placeholder(tf.float32, [1, num_point, 3])
gt_tensor = tf.placeholder(tf.float32, [1, num_point, 3])
if False:
pred_tensor, centroid, furthest_distance = normalize_point_cloud(pred_tensor)
gt_tensor, centroid, furthest_distance = normalize_point_cloud(gt_tensor)
cd_forward, _, cd_backward, _ = tf_nndistance.nn_distance(pred_tensor, gt_tensor)
cd_forward = cd_forward[0, :]
cd_backward = cd_backward[0, :]
emd_dis = loss_utils.earth_mover(pred_tensor, gt_tensor)
_, shapeDis, den8, den16, den24 = loss_utils.get_Geometric_Loss(pred_tensor, gt_tensor, return_all=True)
datasets = ["model40"][0]
modes = ["uniform","random","partial","scan"][:]
subfixs = ["INV_20201101-1127"] # 512
#subfixs = ["INV_20201121-1135"] # 256
#subfixs = ["INV_20201121-1136"] # 128
with tf.Session() as sess:
fieldnames = ["name", "CD", "CD_F", "CD_B", "HD", "EMD", "MD", "Den8","Den16","Den24"]#,"Den2","Den3"]
for dataset in datasets:
for subfix in subfixs:
for mode in modes:
gt_paths = glob(os.path.join(root, '%s/HD/%s/*.xyz' % (dataset, mode)))
print(subfix,"-------",mode, "------", dataset, "------", len(gt_paths))
avg_cd_forward_value = AverageMeter()
avg_cd_backward_value = AverageMeter()
avg_hd_value = AverageMeter()
avg_emd_value = AverageMeter()
avg_md_value = AverageMeter()
avg_den8 = AverageMeter()
avg_den16 = AverageMeter()
avg_den24 = AverageMeter()
counter = 0
source_dir = os.path.join(root,dataset,subfix,mode)
print("evaluate_folder:",source_dir)
csv_file = os.path.join(source_dir,"evaluation_%s_%s.csv"%(subfix,mode))
with open(csv_file, "w") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames, restval="-", extrasaction="ignore")
writer.writeheader()
for gt_path in tqdm(gt_paths, total=len(gt_paths)):
row = {}
gt = load(gt_path)[:, :3]
gt = gt[np.newaxis, ...]
pred_path = os.path.basename(gt_path).replace("_HD_","_%s_"%subfix)
pred = pc_util.load(os.path.join(source_dir,pred_path))
pred = pred[:, :3]
row["name"] = os.path.basename(pred_path)
pred = pred[np.newaxis, ...]
cd_forward_value, cd_backward_value, emd_val, shape_val, den8_val, den16_val, den24_val = \
sess.run([cd_forward, cd_backward, emd_dis, shapeDis,
den8, den16, den24],
feed_dict={pred_tensor:pred, gt_tensor:gt})
#save_ply_property(np.squeeze(pred), cd_forward_value, pred_path[:-4]+"_cdF.ply", property_max=0.003, cmap_name="jet")
#save_ply_property(np.squeeze(gt), cd_backward_value, pred_path[:-4]+"_cdB.ply", property_max=0.003, cmap_name="jet")
md_value = np.mean(cd_forward_value)+np.mean(cd_backward_value)
hd_value = np.max(np.amax(cd_forward_value, axis=0)+np.amax(cd_backward_value, axis=0))
cd_backward_value = np.mean(cd_backward_value)
cd_forward_value = np.mean(cd_forward_value)
row["CD"] = cd_forward_value+cd_backward_value
row["CD_F"] = cd_forward_value
row["CD_B"] = cd_backward_value
row["HD"] = hd_value
row["EMD"] = emd_val
row["MD"] = shape_val
row["Den8"] = den8_val
row["Den16"] = den16_val
row["Den24"] = den24_val
avg_cd_forward_value.update(cd_forward_value)
avg_cd_backward_value.update(cd_backward_value)
avg_hd_value.update(hd_value)
avg_emd_value.update(emd_val)
avg_md_value.update(shape_val)
avg_den8.update(den8_val)
avg_den16.update(den16_val)
avg_den24.update(den24_val)
writer.writerow(row)
counter += 1
row = OrderedDict()
#avg_md_forward_value /= counter
#avg_md_backward_value /= counter
#avg_hd_value /= counter
#avg_emd_value /= counter
row["CD"] = avg_cd_forward_value.avg + avg_cd_backward_value.avg
row["CD_F"] = avg_cd_forward_value.avg
row["CD_B"] = avg_cd_backward_value.avg
row["HD"] = avg_hd_value.avg
row["EMD"] = avg_emd_value.avg
row["MD"] = avg_md_value.avg
row["Den8"] = avg_den8.avg
row["Den16"] = avg_den16.avg
row["Den24"] = avg_den24.avg
print("{:60s} ".format("name"), "|".join(["{:>15s}".format(d) for d in fieldnames[1:]]))
writer.writerow(row)
print("|".join(["{:>15.8f}".format(d) for d in row.values()]))
print("out_file", csv_file)