-
Notifications
You must be signed in to change notification settings - Fork 1
/
dl_latex_collection.tex
247 lines (224 loc) · 6.86 KB
/
dl_latex_collection.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
% A collection of PGF/TikZ figures for Deep Learning,
% using a decompossed method to illustrate.
% Written by Ling KangJie<[email protected]>
% Reference: https://github.com/PetarV-/TikZ
\documentclass{article}
\usepackage[margin=12mm]{geometry}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{etoolbox}
\usepackage{xcolor}
\usepackage{amssymb}
\usepackage{xcolor}
\usepackage{pgfplots}
\usepackage{braids}
\usepackage{etoolbox}
\usepackage{tkz-graph}
\usepackage{pgfplots}
\usepackage{amsbsy}
\usepackage{etoolbox}
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri, decorations.pathreplacing,shadows,calc}
\usetikzlibrary{automata, chains, decorations.pathmorphing, positioning}
\usepackage{relsize}
\usetikzlibrary{automata, patterns,positioning}
\usepackage{bm}
\usepackage{tkz-graph}
\usetikzlibrary{snakes}
\usetikzlibrary{arrows,backgrounds}
\usetikzlibrary{positioning, decorations.pathmorphing, shapes}
\usetikzlibrary{matrix}
\usetikzlibrary{calc}
\definecolor{olivegreen}{rgb}{0,0.6,0}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\usepackage{color}
\definecolor{listinggray}{gray}{0.92}
\lstset{ %
language=[LaTeX]TeX,
breaklines=true,
frame=single,
basicstyle=\footnotesize\ttfamily,
backgroundcolor=\color{listinggray},
keywordstyle=\color{blue}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\hypersetup{
colorlinks=true,
linkcolor=blue,
anchorcolor=black,
citecolor=olive,
filecolor=magenta,
menucolor=red,
urlcolor=blue
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\demo}[2][1]{
\begin{minipage}{.49\linewidth}
\centering
\resizebox{#1\linewidth}{!}{
\input{demo/#2}
}
\end{minipage}
\hspace{0.01\linewidth}
\begin{minipage}{0.5\linewidth}
\lstinputlisting{demo/#2}
\end{minipage}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\example}[1]{
\resizebox{\linewidth}{!}{
\input{demo/#1}
}
\lstinputlisting{demo/#1}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{A Collection of PGF/TikZ Examples for Deep Learning}
\author{\href{[email protected]}{Ling KangJie}}
\date{\today{}~(v0.1.0)}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{abstract}
This document is a collection of common examples for scientific papers particularly for Deep Learning topics by using PGF/TikZ package.
Reference:
\href{https://github.com/PetarV-/TikZ}{https://github.com/PetarV-/TikZ}.
\end{abstract}
\tableofcontents
\section{Deep Learning}
\subsection{2D Convolution Operation}
\example{2d_convolution}
\subsection{A3C execution}
\example{a3c_execution}
\subsection{A3C Neural Network}
\example{a3c_neural_network}
\subsection{Amplitude Modulation}
\example{amplitude_modulation}
\subsection{A Trous Convolutions}
\example{a_trous_convolutions}
\subsection{Bidirectional Long Short Term Memory}
\example{bidirectional_long_short-term_memory}
\subsection{BWT}
\example{bwt}
\subsection{Convolutional Autoencoder}
\example{convolutional_autoencoder}
\subsection{Convolutional Cross-connection}
\example{convolutional_cross-connection}
\subsection{Coordinate Systems}
\example{coordinate_systems}
\subsection{CRT Rendering}
\example{crt_rendering}
\subsection{Cyclegan}
\example{cyclegan}
\subsection{Deep Belif Network}
\example{deep_belief_network}
\subsection{Deep Graph Infomax}
\example{deep_graph_infomax}
\subsection{de-bruijn-graph}
\example{de_bruijn_graph}
\subsection{DNA}
\example{dna}
\subsection{Dropout}
\example{dropout}
\subsection{Emulator Modules}
\example{emulator_modules}
\subsection{Fetch Decode Execute cycle}
\example{fetch-decode-execute_cycle}
\subsection{Frequence Modulation}
\example{frequency_modulation}
\subsection{Fully Connected Cross Connection}
\example{fully-connected_cross-connection}
\subsection{GameBoy Joypad Register}
\example{gameboy_joypad_register}
\subsection{Gameboy Palette Translation}
\example{gameboy_palette_translation}
\subsection{Gameboy Tiling System}
\example{gameboy_tiling_system}
\subsection{Gat Layer}
\example{gat_layer}
\subsection{Generative Adversarial Network}
\example{generative_adversarial_network}
\subsection{Gene Expression}
\example{gene_expression}
\subsection{Git Dataflow}
\example{git_dataflow}
\subsection{Git WorkFlow}
\example{git_workflow}
\subsection{Gamhmm}
\example{gmhmm}
\subsection{Graph Convolution}
\example{graph_convolution}
\subsection{Hamitonian Graph}
\example{hamiltonian_graph}
\subsection{Hierachical Graph Classifier}
\example{hierarchical_graph_classifier}
\subsection{Hmm Transition Smoothing}
\example{hmm_transition_smoothing}
\subsection{Insruction Execution}
\example{instruction_execution}
\subsection{IQ Sampling}
\example{iq_sampling}
\subsection{Lego Deep Learning}
\example{lego_deep_learning}
\subsection{Long Short Term Memory}
\example{long_short-term_memory}
\subsection{Maximum Flow Problem}
\example{maximum_flow_problem}
\subsection{MCL}
\example{mcl}
\subsection{Message Passing Neural Network}
\example{message_passing_neural_network}
\subsection{Multilayer Network}
\example{multilayer_network}
\subsection{Multilayer Perceptron}
\example{multilayer_perceptron}
\subsection{Multiplex Chain Gmhmm}
\example{multiplex_chain_gmhmm}
\subsection{Multiplex Chain Gmhmm Beta}
\example{multiplex_chain_gmhmm_beta}
\subsection{Multiplex Epidemic Awareness Network}
\example{multiplex_epidemics-awareness_network}
\subsection{Multiplex Network Underlying Graph}
\example{multiplex_network_underlying_graph}
\subsection{Muxstep Pipeline}
\example{muxstep_pipeline}
\subsection{Progressive Alignment}
\example{progressive_alignment}
\subsection{Progressive Neural Network}
\example{progressive_neural_network}
\subsection{Reinforcement Learning Greedy Policy}
\example{reinforcement_learning_greedy_policy}
\subsection{Relational Network}
\example{relational_network}
\subsection{RN Object Extraction}
\example{rn_object_extraction}
\subsection{Sampling}
\example{sampling}
\subsection{Self-attention}
\example{self-attention}
\subsection{Semi-supervised Embedding}
\example{semi-supervised_embedding}
\subsection{Semi-supervised Learning}
\example{semi-supervised_learning}
\subsection{Shortest Path Problem}
\example{shortest_path_problem}
\subsection{Sparse DGI}
\example{sparse_dgi}
\subsection{Supervised Learning Setup}
\example{supervised_learning_setup}
\subsection{Variational Denoising Autoencoder}
\example{variational_denoising_autoencoder}
\subsection{Web Graph}
\example{web_graph}
\subsection{X-CNN}
\example{x-cnn}
\subsection{X-LSTM}
\example{x-lstm}
\end{document}