forked from xesscorp/VHDL_Lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Spi.vhd
194 lines (172 loc) · 7.51 KB
/
Spi.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
--**********************************************************************
-- Copyright (c) 2013-2014 by XESS Corp <http://www.xess.com>.
-- All rights reserved.
--
-- This library is free software; you can redistribute it and/or
-- modify it under the terms of the GNU Lesser General Public
-- License as published by the Free Software Foundation; either
-- version 3.0 of the License, or (at your option) any later version.
--
-- This library is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-- Lesser General Public License for more details.
--
-- You should have received a copy of the GNU Lesser General Public
-- License along with this library. If not, see
-- <http://www.gnu.org/licenses/>.
--**********************************************************************
library IEEE, XESS;
use IEEE.std_logic_1164.all;
use XESS.CommonPckg.all;
package SpiPckg is
component SpiMaster is
generic (
FREQ_G : real := 100.0; -- Main clock frequency (MHz).
SPI_FREQ_G : real := 25.0; -- SPI clock frequency (MHz).
CPOL_G : std_logic := LO; -- SCK polarity (0=normally low, 1=normally high).
CPHA_G : std_logic := HI -- SCK phase (0=sample on leading edge, 1=sample on trailing edge).
);
port (
rst_i : in std_logic := NO; -- Active-high reset input.
clk_i : in std_logic; -- Master clock input.
addr_i : in std_logic_vector(1 downto 0); -- Register address from PC.
data_i : in std_logic_vector(7 downto 0); -- Data from PC.
data_o : out std_logic_vector(7 downto 0); -- Data to PC.
wr_i : in std_logic := LO; -- Write control from PC.
rd_i : in std_logic := LO; -- Read control from PC.
begun_o : out std_logic; -- True when R/W operation has begun.
done_o : out std_logic; -- True when R/W operation completed.
ssel_o : out std_logic; -- SPI chip-select line.
sck_o : out std_logic; -- SPI clock line.
mosi_o : out std_logic; -- SPI data from master to slave.
miso_i : in std_logic := LO -- SPI data from slave to master.
);
end component;
end package;
library IEEE, XESS;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;
use XESS.CommonPckg.all;
--library unisim;
--use unisim.vcomponents.all;
entity SpiMaster is
generic (
FREQ_G : real := 100.0; -- Main clock frequency (MHz).
SPI_FREQ_G : real := 25.0; -- SPI clock frequency (MHz).
CPOL_G : std_logic := LO; -- SCK polarity (0=normally low, 1=normally high).
CPHA_G : std_logic := HI -- SCK phase (0=sample on leading edge, 1=sample on trailing edge).
);
port (
rst_i : in std_logic := NO; -- Active-high reset input.
clk_i : in std_logic; -- Master clock input.
addr_i : in std_logic_vector(1 downto 0); -- Register address from PC.
data_i : in std_logic_vector(7 downto 0); -- Data from PC.
data_o : out std_logic_vector(7 downto 0); -- Data to PC.
wr_i : in std_logic := LO; -- Write control from PC.
rd_i : in std_logic := LO; -- Read control from PC.
begun_o : out std_logic; -- True when R/W operation has begun.
done_o : out std_logic; -- True when R/W operation completed.
ssel_o : out std_logic; -- SPI chip-select line.
sck_o : out std_logic; -- SPI clock line.
mosi_o : out std_logic; -- SPI data from master to slave.
miso_i : in std_logic := LO -- SPI data from slave to master.
);
end entity;
architecture arch of SpiMaster is
subtype regAddr_t is std_logic_vector(addr_i'range);
constant RESET_ADDR : regAddr_t := "00";
constant SINGLE_XFER_ADDR : regAddr_t := "01";
constant MULTI_XFER_ADDR : regAddr_t := "10";
constant CLKS_PER_SCLK_PHASE_C : natural := integer(round(0.5 * FREQ_G / SPI_FREQ_G));
constant DISABLE_TIME_C : natural := 10;
constant ENABLE_SETUP_TIME_C : natural := 5;
constant ENABLE_HOLD_TIME_C : natural := 7;
signal sck_r : std_logic := CPOL_G;
signal sr_r : std_logic_vector(data_i'range);
signal enabled_r : boolean;
begin
process (clk_i)
variable rst_v : boolean := false;
variable sclkPhaseTimer_v : natural range 0 to CLKS_PER_SCLK_PHASE_C;
variable sselTimer_v : natural range 0 to DISABLE_TIME_C;
variable disableAfterXfer_v : boolean;
variable bitCntr_v : natural range 0 to sr_r'length;
begin
if rising_edge(clk_i) then
-- These acknowledgement signals are off by default.
done_o <= NO;
begun_o <= NO;
-- Reset the SPI module.
if rst_i = YES or rst_v then
rst_v := false;
sck_r <= CPOL_G;
sclkPhaseTimer_v := 0;
sselTimer_v := 0;
bitCntr_v := 0;
enabled_r <= false;
disableAfterXfer_v := false;
-- Time the setup or hold for the chip-select pulse, or the
-- duration of the deselect time between operations.
elsif sselTimer_v /= 0 then
sselTimer_v := sselTimer_v - 1;
elsif enabled_r and bitCntr_v = 0 and disableAfterXfer_v then
enabled_r <= false;
disableAfterXfer_v := false;
sselTimer_v := DISABLE_TIME_C - 1;
-- If bit xfer is not active, then look for R/W operations from the host.
elsif bitCntr_v = 0 then
if wr_i = YES or rd_i = YES then
if addr_i = RESET_ADDR then
rst_v := true;
begun_o <= YES;
done_o <= YES;
else
sclkPhaseTimer_v := CLKS_PER_SCLK_PHASE_C - 1;
sr_r <= data_i;
begun_o <= YES;
enabled_r <= true;
sselTimer_v := ENABLE_SETUP_TIME_C;
disableAfterXfer_v := false;
if addr_i = SINGLE_XFER_ADDR then
disableAfterXfer_v := true;
end if;
bitCntr_v := sr_r'length;
end if;
end if;
-- Wait until another transition of the SPI clock is needed.
elsif sclkPhaseTimer_v /= 0 then
sclkPhaseTimer_v := sclkPhaseTimer_v - 1;
-- Generate SPI clock transition and handle bit xfer.
else
if sck_r = (CPOL_G xor CPHA_G) then
-- Sample data from the slave on the leading edge of SCK when CPHA_G=0
-- and the trailing edge when CPHA_G=1.
sr_r <= sr_r(sr_r'high-1 downto 0) & miso_i;
else
-- Propagate data to the slave on the opposite edge of SCK.
mosi_o <= sr_r(sr_r'high);
end if;
-- Decrement bit counter on the trailing edge of SCK.
if sck_r = not CPOL_G then
if bitCntr_v /= 0 then
if bitCntr_v = 1 then
done_o <= YES;
if disableAfterXfer_v = true then
sselTimer_v := ENABLE_HOLD_TIME_C - 1;
end if;
end if;
bitCntr_v := bitCntr_v - 1;
end if;
end if;
-- Transition the SPI clock and set the phase interval.
sck_r <= not sck_r;
sclkPhaseTimer_v := CLKS_PER_SCLK_PHASE_C - 1;
end if;
end if;
end process;
ssel_o <= LO when enabled_r = true else HI;
sck_o <= sck_r;
data_o <= sr_r;
end architecture;