Skip to content

Matlab App interactive GUI to compute Fidelity and Loschmidt Echoes for quadratic bosonic Hamiltonians.

License

Notifications You must be signed in to change notification settings

lifabio/FidelityEchoes_GUI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FidelityEchoes GUI

Matlab App interactive GUI to compute Fidelity and Loschmidt Echoes for quadratic bosonic Hamiltonians.

Given:

  • a Quadratic Bosonic Hamiltonian

$$ H=(\alpha + \beta)(a^\dagger a + \frac{1}{2}) + \frac{(\beta - \alpha)}{2}(a^{\dagger 2} + a^2 ) $$

defined by the bosonic creation (anhilation) operators $a^\dagger$ ($a$) and parameters $\alpha$ and $\beta$.

  • a perturbated Hamiltonian $H_2 = H + \epsilon P$, with $P$ also in the quadratic form

$$ P=(c + s)(a^\dagger a + \frac{1}{2}) + \frac{(s - c)}{2}(a^{\dagger 2} + a^2 ) $$

and perturbation parameters $c$, $s$ defined as $c=\cos(\Theta)$ and $s=\sin(\Theta)$.

The algorithm takes as input parameters: $\alpha$, $\beta$, $\epsilon$, $\Theta$ and initial state $|\Psi_0\rangle$ and computes the quantum Fidelity $F(t)$ and Loschmidt Echo $M(t)$ as a function of time as

$$ F(t)= \frac{||\langle\Psi_2(t)|\Psi_1(t)\rangle||^2}{\langle\Psi_1(t)|\Psi_1(t)\rangle\langle\Psi_2(t)|\Psi_2(t)\rangle} $$

$$ M(t)= \frac{||\langle\Psi_0|\Psi_f(t)\rangle||^2}{\langle\Psi_0|\Psi_0\rangle\langle\Psi_f(t)|\Psi_f(t)\rangle} $$

where $|\Psi_1(t)\rangle = e^{-i H t}|\Psi_0\rangle$ and $|\Psi_2(t)\rangle = e^{-i H_2 t}|\Psi_0\rangle$ are the forward propagation of the initial state $|\Psi_0\rangle$ according to $H$ and $H_2$ respectivelly. $|\Psi_f(t)\rangle = e^{+i H_2 t}e^{-i H t}|\Psi_0\rangle$ is the forward and then backward propagation of $|\Psi_0\rangle$ according to $H$ and $H_2$.

The initial state $|\Psi_0\rangle$ can be chosen from:

  • Equal superposition of Fock states $|\Psi_0\rangle = \frac{|1\rangle + |2\rangle + ... + |N\rangle}{\sqrt{N}}$
  • Coherent State $|\Psi_0\rangle = |z\rangle$ with $z=|\alpha_0|e^{i\sigma}$
  • Vacuum State $|\Psi_0\rangle = |0\rangle$
  • Single Fock state $|\Psi_0\rangle = |n_0\rangle$

Figure FidelityGUI.png shows the visual appearence of the GUI.

About

Matlab App interactive GUI to compute Fidelity and Loschmidt Echoes for quadratic bosonic Hamiltonians.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages