diff --git a/utils/datasets.py b/utils/datasets.py index c325b9910ed3..6a2dc58dd6cd 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -407,19 +407,19 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) else: raise Exception(f'{prefix}{p} does not exist') - self.img_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) + self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib - assert self.img_files, f'{prefix}No images found' + assert self.im_files, f'{prefix}No images found' except Exception as e: raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}') # Check cache - self.label_files = img2label_paths(self.img_files) # labels + self.label_files = img2label_paths(self.im_files) # labels cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') try: cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict assert cache['version'] == self.cache_version # same version - assert cache['hash'] == get_hash(self.label_files + self.img_files) # same hash + assert cache['hash'] == get_hash(self.label_files + self.im_files) # same hash except Exception: cache, exists = self.cache_labels(cache_path, prefix), False # cache @@ -437,7 +437,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r labels, shapes, self.segments = zip(*cache.values()) self.labels = list(labels) self.shapes = np.array(shapes, dtype=np.float64) - self.img_files = list(cache.keys()) # update + self.im_files = list(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update n = len(shapes) # number of images bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index @@ -466,7 +466,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r s = self.shapes # wh ar = s[:, 1] / s[:, 0] # aspect ratio irect = ar.argsort() - self.img_files = [self.img_files[i] for i in irect] + self.im_files = [self.im_files[i] for i in irect] self.label_files = [self.label_files[i] for i in irect] self.labels = [self.labels[i] for i in irect] self.shapes = s[irect] # wh @@ -485,24 +485,20 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources) - self.imgs, self.img_npy = [None] * n, [None] * n + self.ims = [None] * n + self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files] if cache_images: - if cache_images == 'disk': - self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy') - self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files] - self.im_cache_dir.mkdir(parents=True, exist_ok=True) gb = 0 # Gigabytes of cached images - self.img_hw0, self.img_hw = [None] * n, [None] * n - results = ThreadPool(NUM_THREADS).imap(self.load_image, range(n)) + self.im_hw0, self.im_hw = [None] * n, [None] * n + fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image + results = ThreadPool(NUM_THREADS).imap(fcn, range(n)) pbar = tqdm(enumerate(results), total=n) for i, x in pbar: if cache_images == 'disk': - if not self.img_npy[i].exists(): - np.save(self.img_npy[i].as_posix(), x[0]) - gb += self.img_npy[i].stat().st_size + gb += self.npy_files[i].stat().st_size else: # 'ram' - self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) - gb += self.imgs[i].nbytes + self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) + gb += self.ims[i].nbytes pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})' pbar.close() @@ -512,8 +508,8 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''): nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." with Pool(NUM_THREADS) as pool: - pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))), - desc=desc, total=len(self.img_files)) + pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))), + desc=desc, total=len(self.im_files)) for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: nm += nm_f nf += nf_f @@ -530,8 +526,8 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''): LOGGER.info('\n'.join(msgs)) if nf == 0: LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}') - x['hash'] = get_hash(self.label_files + self.img_files) - x['results'] = nf, nm, ne, nc, len(self.img_files) + x['hash'] = get_hash(self.label_files + self.im_files) + x['results'] = nf, nm, ne, nc, len(self.im_files) x['msgs'] = msgs # warnings x['version'] = self.cache_version # cache version try: @@ -543,7 +539,7 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''): return x def __len__(self): - return len(self.img_files) + return len(self.im_files) # def __iter__(self): # self.count = -1 @@ -622,17 +618,15 @@ def __getitem__(self, index): img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB img = np.ascontiguousarray(img) - return torch.from_numpy(img), labels_out, self.img_files[index], shapes + return torch.from_numpy(img), labels_out, self.im_files[index], shapes def load_image(self, i): - # loads 1 image from dataset index 'i', returns (im, original hw, resized hw) - im = self.imgs[i] + # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw) + im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i], if im is None: # not cached in RAM - npy = self.img_npy[i] - if npy and npy.exists(): # load npy - im = np.load(npy) + if fn.exists(): # load npy + im = np.load(fn) else: # read image - f = self.img_files[i] im = cv2.imread(f) # BGR assert im is not None, f'Image Not Found {f}' h0, w0 = im.shape[:2] # orig hw @@ -643,7 +637,13 @@ def load_image(self, i): interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA) return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized else: - return self.imgs[i], self.img_hw0[i], self.img_hw[i] # im, hw_original, hw_resized + return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized + + def cache_images_to_disk(self, i): + # Saves an image as an *.npy file for faster loading + f = self.npy_files[i] + if not f.exists(): + np.save(f.as_posix(), cv2.imread(self.im_files[i])) def load_mosaic(self, index): # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic @@ -777,16 +777,16 @@ def load_mosaic9(self, index): @staticmethod def collate_fn(batch): - img, label, path, shapes = zip(*batch) # transposed + im, label, path, shapes = zip(*batch) # transposed for i, lb in enumerate(label): lb[:, 0] = i # add target image index for build_targets() - return torch.stack(img, 0), torch.cat(label, 0), path, shapes + return torch.stack(im, 0), torch.cat(label, 0), path, shapes @staticmethod def collate_fn4(batch): img, label, path, shapes = zip(*batch) # transposed n = len(shapes) // 4 - img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] + im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]]) wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]]) @@ -800,13 +800,13 @@ def collate_fn4(batch): else: im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s - img4.append(im) + im4.append(im) label4.append(lb) for i, lb in enumerate(label4): lb[:, 0] = i # add target image index for build_targets() - return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 + return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4 # Ancillary functions -------------------------------------------------------------------------------------------------- @@ -999,12 +999,12 @@ def hub_ops(f, max_dim=1920): 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()), 'per_class': (x > 0).sum(0).tolist()}, 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in - zip(dataset.img_files, dataset.labels)]} + zip(dataset.im_files, dataset.labels)]} if hub: im_dir = hub_dir / 'images' im_dir.mkdir(parents=True, exist_ok=True) - for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'): + for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'): pass # Profile diff --git a/utils/loggers/wandb/wandb_utils.py b/utils/loggers/wandb/wandb_utils.py index 3835436543d2..786e58a19972 100644 --- a/utils/loggers/wandb/wandb_utils.py +++ b/utils/loggers/wandb/wandb_utils.py @@ -403,7 +403,7 @@ def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[i # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging artifact = wandb.Artifact(name=name, type="dataset") img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None - img_files = tqdm(dataset.img_files) if not img_files else img_files + img_files = tqdm(dataset.im_files) if not img_files else img_files for img_file in img_files: if Path(img_file).is_dir(): artifact.add_dir(img_file, name='data/images') diff --git a/val.py b/val.py index 78abbda8231a..8bde37bd5dc7 100644 --- a/val.py +++ b/val.py @@ -297,7 +297,7 @@ def run(data, pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: - eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate + eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize()