From 184565109b77df605134cf2f6ba1b85da294070a Mon Sep 17 00:00:00 2001 From: mlong93 <35275280+mlong93@users.noreply.github.com> Date: Tue, 17 Dec 2024 15:21:10 -0800 Subject: [PATCH] feat: Adding init tool rule for Anthropic endpoint (#2262) Co-authored-by: Mindy Long --- letta/agent.py | 26 +++++ letta/client/client.py | 1 + letta/constants.py | 3 + letta/llm_api/anthropic.py | 20 ++-- letta/llm_api/llm_api_tools.py | 13 ++- .../claude-3-sonnet-20240229.json | 9 ++ .../openai-gpt-3.5-turbo.json | 7 ++ tests/integration_test_agent_tool_graph.py | 109 +++++++++++++++++- .../integration_test_offline_memory_agent.py | 1 + 9 files changed, 179 insertions(+), 10 deletions(-) create mode 100644 tests/configs/llm_model_configs/claude-3-sonnet-20240229.json create mode 100644 tests/configs/llm_model_configs/openai-gpt-3.5-turbo.json diff --git a/letta/agent.py b/letta/agent.py index 3e4d244323..a7448ac44f 100644 --- a/letta/agent.py +++ b/letta/agent.py @@ -18,6 +18,7 @@ MESSAGE_SUMMARY_WARNING_FRAC, O1_BASE_TOOLS, REQ_HEARTBEAT_MESSAGE, + STRUCTURED_OUTPUT_MODELS ) from letta.errors import LLMError from letta.helpers import ToolRulesSolver @@ -276,6 +277,7 @@ def __init__( # gpt-4, gpt-3.5-turbo, ... self.model = self.agent_state.llm_config.model + self.check_tool_rules() # state managers self.block_manager = BlockManager() @@ -381,6 +383,14 @@ def __init__( # Create the agent in the DB self.update_state() + def check_tool_rules(self): + if self.model not in STRUCTURED_OUTPUT_MODELS: + if len(self.tool_rules_solver.init_tool_rules) > 1: + raise ValueError("Multiple initial tools are not supported for non-structured models. Please use only one initial tool rule.") + self.supports_structured_output = False + else: + self.supports_structured_output = True + def update_memory_if_change(self, new_memory: Memory) -> bool: """ Update internal memory object and system prompt if there have been modifications. @@ -588,6 +598,7 @@ def _get_ai_reply( empty_response_retry_limit: int = 3, backoff_factor: float = 0.5, # delay multiplier for exponential backoff max_delay: float = 10.0, # max delay between retries + step_count: Optional[int] = None, ) -> ChatCompletionResponse: """Get response from LLM API with robust retry mechanism.""" @@ -596,6 +607,16 @@ def _get_ai_reply( self.functions if not allowed_tool_names else [func for func in self.functions if func["name"] in allowed_tool_names] ) + # For the first message, force the initial tool if one is specified + force_tool_call = None + if ( + step_count is not None + and step_count == 0 + and not self.supports_structured_output + and len(self.tool_rules_solver.init_tool_rules) > 0 + ): + force_tool_call = self.tool_rules_solver.init_tool_rules[0].tool_name + for attempt in range(1, empty_response_retry_limit + 1): try: response = create( @@ -606,6 +627,7 @@ def _get_ai_reply( functions_python=self.functions_python, function_call=function_call, first_message=first_message, + force_tool_call=force_tool_call, stream=stream, stream_interface=self.interface, ) @@ -897,6 +919,7 @@ def step( step_count = 0 while True: kwargs["first_message"] = False + kwargs["step_count"] = step_count step_response = self.inner_step( messages=next_input_message, **kwargs, @@ -972,6 +995,7 @@ def inner_step( first_message_retry_limit: int = FIRST_MESSAGE_ATTEMPTS, skip_verify: bool = False, stream: bool = False, # TODO move to config? + step_count: Optional[int] = None, ) -> AgentStepResponse: """Runs a single step in the agent loop (generates at most one LLM call)""" @@ -1014,7 +1038,9 @@ def inner_step( else: response = self._get_ai_reply( message_sequence=input_message_sequence, + first_message=first_message, stream=stream, + step_count=step_count, ) # Step 3: check if LLM wanted to call a function diff --git a/letta/client/client.py b/letta/client/client.py index d3259214e4..af2edcca4a 100644 --- a/letta/client/client.py +++ b/letta/client/client.py @@ -2156,6 +2156,7 @@ def create_agent( "block_ids": [b.id for b in memory.get_blocks()] + block_ids, "tool_ids": tool_ids, "tool_rules": tool_rules, + "include_base_tools": include_base_tools, "system": system, "agent_type": agent_type, "llm_config": llm_config if llm_config else self._default_llm_config, diff --git a/letta/constants.py b/letta/constants.py index 5e9ac9b268..437d956c49 100644 --- a/letta/constants.py +++ b/letta/constants.py @@ -48,6 +48,9 @@ DEFAULT_MESSAGE_TOOL = "send_message" DEFAULT_MESSAGE_TOOL_KWARG = "message" +# Structured output models +STRUCTURED_OUTPUT_MODELS = {"gpt-4o", "gpt-4o-mini"} + # LOGGER_LOG_LEVEL is use to convert Text to Logging level value for logging mostly for Cli input to setting level LOGGER_LOG_LEVELS = {"CRITICAL": CRITICAL, "ERROR": ERROR, "WARN": WARN, "WARNING": WARNING, "INFO": INFO, "DEBUG": DEBUG, "NOTSET": NOTSET} diff --git a/letta/llm_api/anthropic.py b/letta/llm_api/anthropic.py index 9df4cec248..912ac4567f 100644 --- a/letta/llm_api/anthropic.py +++ b/letta/llm_api/anthropic.py @@ -99,16 +99,20 @@ def convert_tools_to_anthropic_format(tools: List[Tool]) -> List[dict]: - 1 level less of nesting - "parameters" -> "input_schema" """ - tools_dict_list = [] + formatted_tools = [] for tool in tools: - tools_dict_list.append( - { - "name": tool.function.name, - "description": tool.function.description, - "input_schema": tool.function.parameters, + formatted_tool = { + "name" : tool.function.name, + "description" : tool.function.description, + "input_schema" : tool.function.parameters or { + "type": "object", + "properties": {}, + "required": [] } - ) - return tools_dict_list + } + formatted_tools.append(formatted_tool) + + return formatted_tools def merge_tool_results_into_user_messages(messages: List[dict]): diff --git a/letta/llm_api/llm_api_tools.py b/letta/llm_api/llm_api_tools.py index 163c4e1868..dadd128aa9 100644 --- a/letta/llm_api/llm_api_tools.py +++ b/letta/llm_api/llm_api_tools.py @@ -113,6 +113,7 @@ def create( function_call: str = "auto", # hint first_message: bool = False, + force_tool_call: Optional[str] = None, # Force a specific tool to be called # use tool naming? # if false, will use deprecated 'functions' style use_tool_naming: bool = True, @@ -252,6 +253,16 @@ def create( if not use_tool_naming: raise NotImplementedError("Only tool calling supported on Anthropic API requests") + tool_call = None + if force_tool_call is not None: + tool_call = { + "type": "function", + "function": { + "name": force_tool_call + } + } + assert functions is not None + return anthropic_chat_completions_request( url=llm_config.model_endpoint, api_key=model_settings.anthropic_api_key, @@ -259,7 +270,7 @@ def create( model=llm_config.model, messages=[cast_message_to_subtype(m.to_openai_dict()) for m in messages], tools=[{"type": "function", "function": f} for f in functions] if functions else None, - # tool_choice=function_call, + tool_choice=tool_call, # user=str(user_id), # NOTE: max_tokens is required for Anthropic API max_tokens=1024, # TODO make dynamic diff --git a/tests/configs/llm_model_configs/claude-3-sonnet-20240229.json b/tests/configs/llm_model_configs/claude-3-sonnet-20240229.json new file mode 100644 index 0000000000..5eef194bea --- /dev/null +++ b/tests/configs/llm_model_configs/claude-3-sonnet-20240229.json @@ -0,0 +1,9 @@ +{ + "context_window": 200000, + "model": "claude-3-5-sonnet-20241022", + "model_endpoint_type": "anthropic", + "model_endpoint": "https://api.anthropic.com/v1", + "context_window": 200000, + "model_wrapper": null, + "put_inner_thoughts_in_kwargs": true +} diff --git a/tests/configs/llm_model_configs/openai-gpt-3.5-turbo.json b/tests/configs/llm_model_configs/openai-gpt-3.5-turbo.json new file mode 100644 index 0000000000..059d6ad82f --- /dev/null +++ b/tests/configs/llm_model_configs/openai-gpt-3.5-turbo.json @@ -0,0 +1,7 @@ +{ + "context_window": 16385, + "model": "gpt-3.5-turbo", + "model_endpoint_type": "openai", + "model_endpoint": "https://api.openai.com/v1", + "model_wrapper": null +} diff --git a/tests/integration_test_agent_tool_graph.py b/tests/integration_test_agent_tool_graph.py index ff8700c1c3..19c7dbd6cb 100644 --- a/tests/integration_test_agent_tool_graph.py +++ b/tests/integration_test_agent_tool_graph.py @@ -1,7 +1,7 @@ +import time import uuid import pytest - from letta import create_client from letta.schemas.letta_message import FunctionCallMessage from letta.schemas.tool_rule import ChildToolRule, InitToolRule, TerminalToolRule @@ -127,3 +127,110 @@ def test_single_path_agent_tool_call_graph(mock_e2b_api_key_none): print(f"Got successful response from client: \n\n{response}") cleanup(client=client, agent_uuid=agent_uuid) + + +def test_check_tool_rules_with_different_models(mock_e2b_api_key_none): + """Test that tool rules are properly checked for different model configurations.""" + client = create_client() + + config_files = [ + "tests/configs/llm_model_configs/claude-3-sonnet-20240229.json", + "tests/configs/llm_model_configs/openai-gpt-3.5-turbo.json", + "tests/configs/llm_model_configs/openai-gpt-4o.json", + ] + + # Create two test tools + t1_name = "first_secret_word" + t2_name = "second_secret_word" + t1 = client.create_or_update_tool(first_secret_word, name=t1_name) + t2 = client.create_or_update_tool(second_secret_word, name=t2_name) + tool_rules = [ + InitToolRule(tool_name=t1_name), + InitToolRule(tool_name=t2_name) + ] + tools = [t1, t2] + + for config_file in config_files: + # Setup tools + agent_uuid = str(uuid.uuid4()) + + if "gpt-4o" in config_file: + # Structured output model (should work with multiple init tools) + agent_state = setup_agent(client, config_file, agent_uuid=agent_uuid, + tool_ids=[t.id for t in tools], + tool_rules=tool_rules) + assert agent_state is not None + else: + # Non-structured output model (should raise error with multiple init tools) + with pytest.raises(ValueError, match="Multiple initial tools are not supported for non-structured models"): + setup_agent(client, config_file, agent_uuid=agent_uuid, + tool_ids=[t.id for t in tools], + tool_rules=tool_rules) + + # Cleanup + cleanup(client=client, agent_uuid=agent_uuid) + + # Create tool rule with single initial tool + t3_name = "third_secret_word" + t3 = client.create_or_update_tool(third_secret_word, name=t3_name) + tool_rules = [ + InitToolRule(tool_name=t3_name) + ] + tools = [t3] + for config_file in config_files: + agent_uuid = str(uuid.uuid4()) + + # Structured output model (should work with single init tool) + agent_state = setup_agent(client, config_file, agent_uuid=agent_uuid, + tool_ids=[t.id for t in tools], + tool_rules=tool_rules) + assert agent_state is not None + + cleanup(client=client, agent_uuid=agent_uuid) + + +def test_claude_initial_tool_rule_enforced(mock_e2b_api_key_none): + """Test that the initial tool rule is enforced for the first message.""" + client = create_client() + + # Create tool rules that require tool_a to be called first + t1_name = "first_secret_word" + t2_name = "second_secret_word" + t1 = client.create_or_update_tool(first_secret_word, name=t1_name) + t2 = client.create_or_update_tool(second_secret_word, name=t2_name) + tool_rules = [ + InitToolRule(tool_name=t1_name), + ChildToolRule(tool_name=t1_name, children=[t2_name]), + ] + tools = [t1, t2] + + # Make agent state + anthropic_config_file = "tests/configs/llm_model_configs/claude-3-sonnet-20240229.json" + for i in range(3): + agent_uuid = str(uuid.uuid4()) + agent_state = setup_agent(client, anthropic_config_file, agent_uuid=agent_uuid, tool_ids=[t.id for t in tools], tool_rules=tool_rules) + response = client.user_message(agent_id=agent_state.id, message="What is the second secret word?") + + assert_sanity_checks(response) + messages = response.messages + + assert_invoked_function_call(messages, "first_secret_word") + assert_invoked_function_call(messages, "second_secret_word") + + tool_names = [t.name for t in [t1, t2]] + tool_names += ["send_message"] + for m in messages: + if isinstance(m, FunctionCallMessage): + # Check that it's equal to the first one + assert m.function_call.name == tool_names[0] + + # Pop out first one + tool_names = tool_names[1:] + + print(f"Passed iteration {i}") + cleanup(client=client, agent_uuid=agent_uuid) + + # Implement exponential backoff with initial time of 10 seconds + if i < 2: + backoff_time = 10 * (2 ** i) + time.sleep(backoff_time) diff --git a/tests/integration_test_offline_memory_agent.py b/tests/integration_test_offline_memory_agent.py index 8a4fb81c54..07b7c732b2 100644 --- a/tests/integration_test_offline_memory_agent.py +++ b/tests/integration_test_offline_memory_agent.py @@ -126,6 +126,7 @@ def test_chat_only_agent(client, mock_e2b_api_key_none): ) assert chat_only_agent is not None assert set(chat_only_agent.memory.list_block_labels()) == {"chat_agent_persona", "chat_agent_human"} + assert len(chat_only_agent.tools) == 1 for message in ["hello", "my name is not chad, my name is swoodily"]: client.send_message(agent_id=chat_only_agent.id, message=message, role="user")