A full guide how to set everything up can be found here. However, here is a quick guide to get you started.
- Download CARLA leaderboard release, and ScenarioLogs, you can do it by executing:
mkdir leaderboard2
wget https://leaderboard-public-contents.s3.us-west-2.amazonaws.com/CARLA_Leaderboard_2.0.tar.xz -P leaderboard2/
wget https://leaderboard-logs.s3.us-west-2.amazonaws.com/ScenarioLogs.zip -P leaderboard2/
cd leaderboard2/
tar -xvf CARLA_Leaderboard_2.0.tar.xz
unzip ScenarioLogs.zip
mv ScenarioLogs ScenarioLogs_rm
mv ScenarioLogs_rm/ScenarioLogs/ ScenarioLogs
rm -rf ScenarioLogs_rm/
- Create a conda environment by executing:
conda env create -f environment.yml --prefix .carlasg
conda activate .carlasg/
- Create an environment file
.env
and Update the following environment variable paths:
CARLA_SGG_DIR={Absolute_path}/carla_scene_graphs/carla_sgg/
CARLA_9_14_DIR={Absolute_path}/carla_scene_graphs/leaderboard2/CARLA_Leaderboard_20/
LEADERBOARD2_DIR={Absolute_path}/carla_scene_graphs/leaderboard2/
After that, source the environment variables by executing:
source .env
- Launch CARLA on port 2000:
export CARLA_SERVER=$CARLA_9_14_DIR/CarlaUE4.sh
${CARLA_SERVER} --world-port=2000 -opengl -RenderOffscreen
Alternatively you can simply execute:
. launch_carla.sh
- Launch capture_sensor_data.py to collect scene graphs by executing:
export PYTHONPATH=$PYTHONPATH:$CARLA_9_14_DIR/PythonAPI
export PYTHONPATH=$PYTHONPATH:$CARLA_9_14_DIR/PythonAPI/carla
export PYTHONPATH=$PYTHONPATH:$CARLA_9_14_DIR/PythonAPI/carla/dist/carla-0.9.14-py3.7-linux-x86_64.egg
export PYTHONPATH=$PYTHONPATH:$CARLA_SGG_DIR
python capture_sensor_data.py --record {Path to ScenarioLog record}
Alternatively you can simply execute:
. launch_leaderboard2.sh