forked from GarrettChristian/PolarSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pretrain_SemanticKITTI.py
254 lines (226 loc) · 11.5 KB
/
test_pretrain_SemanticKITTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import time
import argparse
import sys
import numpy as np
import torch
import torch.optim as optim
from tqdm import tqdm
from network.BEV_Unet import BEV_Unet
from network.ptBEV import ptBEVnet
from dataloader.dataset import collate_fn_BEV,collate_fn_BEV_test,SemKITTI,SemKITTI_label_name,spherical_dataset,voxel_dataset
#ignore weird np warning
import warnings
warnings.filterwarnings("ignore")
learning_map_inv = { # inverse of previous map
0: 0, # "unlabeled", and others ignored
1: 10, # "car"
2: 11, # "bicycle"
3: 15, # "motorcycle"
4: 18, # "truck"
5: 20, # "other-vehicle"
6: 30, # "person"
7: 31, # "bicyclist"
8: 32, # "motorcyclist"
9: 40, # "road"
10: 44, # "parking"
11: 48, # "sidewalk"
12: 49, # "other-ground"
13: 50, # "building"
14: 51, # "fence"
15: 70, # "vegetation"
16: 71, # "trunk"
17: 72, # "terrain"
18: 80, # "pole"
19: 81, # "traffic-sign"
}
def fast_hist(pred, label, n):
k = (label >= 0) & (label < n)
bin_count=np.bincount(
n * label[k].astype(int) + pred[k], minlength=n ** 2)
return bin_count[:n ** 2].reshape(n, n)
def per_class_iu(hist):
return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
def fast_hist_crop(output, target, unique_label):
hist = fast_hist(output.flatten(), target.flatten(), np.max(unique_label)+1)
hist=hist[unique_label,:]
hist=hist[:,unique_label]
return hist
def SemKITTI2train(label):
if isinstance(label, list):
return [SemKITTI2train_single(a) for a in label]
else:
return SemKITTI2train_single(label)
def SemKITTI2train_single(label):
return label - 1 # uint8 trick
def train2SemKITTI(input_label):
# delete 0 label (uses uint8 trick : 0 - 1 = 255 )
return input_label + 1
def main(args):
data_path = args.data_dir
test_batch_size = args.test_batch_size
model_save_path = args.model_save_path
output_path = args.test_output_path
compression_model = args.grid_size[2]
grid_size = args.grid_size
pytorch_device = torch.device('cuda:0')
model = args.model
if model == 'polar':
fea_dim = 9
circular_padding = True
elif model == 'traditional':
fea_dim = 7
circular_padding = False
# prepare miou fun
unique_label=np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1
unique_label_str=[SemKITTI_label_name[x] for x in unique_label+1]
# prepare model
my_BEV_model=BEV_Unet(n_class=len(unique_label), n_height = compression_model, input_batch_norm = True, dropout = 0.5, circular_padding = circular_padding)
my_model = ptBEVnet(my_BEV_model, pt_model = 'pointnet', grid_size = grid_size, fea_dim = fea_dim, max_pt_per_encode = 256,
out_pt_fea_dim = 512, kernal_size = 1, pt_selection = 'random', fea_compre = compression_model)
if os.path.exists(model_save_path):
my_model.load_state_dict(torch.load(model_save_path))
my_model.to(pytorch_device)
# prepare dataset
test_pt_dataset = SemKITTI(data_path + '/sequences/', imageset = 'test', return_ref = True)
# val_pt_dataset = SemKITTI(data_path + '/sequences/', imageset = 'val', return_ref = True)
if model == 'polar':
test_dataset=spherical_dataset(test_pt_dataset, grid_size = grid_size, ignore_label = 0, fixed_volume_space = True, return_test= True)
# val_dataset=spherical_dataset(val_pt_dataset, grid_size = grid_size, ignore_label = 0, fixed_volume_space = True)
elif model == 'traditional':
test_dataset=voxel_dataset(test_pt_dataset, grid_size = grid_size, ignore_label = 0, fixed_volume_space = True, return_test= True)
# val_dataset=voxel_dataset(val_pt_dataset, grid_size = grid_size, ignore_label = 0, fixed_volume_space = True)
test_dataset_loader = torch.utils.data.DataLoader(dataset = test_dataset,
batch_size = test_batch_size,
collate_fn = collate_fn_BEV_test,
shuffle = False,
num_workers = 4)
# val_dataset_loader = torch.utils.data.DataLoader(dataset = val_dataset,
# batch_size = test_batch_size,
# collate_fn = collate_fn_BEV,
# shuffle = False,
# num_workers = 4)
# validation
# print('*'*80)
# print('Test network performance on validation split')
# print('*'*80)
# pbar = tqdm(total=len(val_dataset_loader))
# my_model.eval()
# hist_list = []
# time_list = []
# with torch.no_grad():
# for i_iter_val,(_,val_vox_label,val_grid,val_pt_labs,val_pt_fea) in enumerate(val_dataset_loader):
# val_vox_label = SemKITTI2train(val_vox_label)
# val_pt_labs = SemKITTI2train(val_pt_labs)
# val_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in val_pt_fea]
# val_grid_ten = [torch.from_numpy(i[:,:2]).to(pytorch_device) for i in val_grid]
# val_label_tensor=val_vox_label.type(torch.LongTensor).to(pytorch_device)
# torch.cuda.synchronize()
# start_time = time.time()
# predict_labels = my_model(val_pt_fea_ten, val_grid_ten)
# torch.cuda.synchronize()
# time_list.append(time.time()-start_time)
# predict_labels = torch.argmax(predict_labels,dim=1)
# predict_labels = predict_labels.cpu().detach().numpy()
# for count,i_val_grid in enumerate(val_grid):
# hist_list.append(fast_hist_crop(predict_labels[count,val_grid[count][:,0],val_grid[count][:,1],val_grid[count][:,2]],val_pt_labs[count],unique_label))
# pbar.update(1)
# iou = per_class_iu(sum(hist_list))
# print('Validation per class iou: ')
# for class_name, class_iou in zip(unique_label_str,iou):
# print('%s : %.2f%%' % (class_name, class_iou*100))
# val_miou = np.nanmean(iou) * 100
# del val_vox_label,val_grid,val_pt_fea,val_grid_ten
# pbar.close()
# print('Current val miou is %.3f ' % val_miou)
# print('Inference time per %d is %.4f seconds\n' %
# (test_batch_size,np.mean(time_list)))
# validation
my_model.eval()
# hist_list = []
# time_list = []
# with torch.no_grad():
# for i_iter_val,(_,val_vox_label,val_grid,val_pt_labs,val_pt_fea) in enumerate(val_dataset_loader):
# val_vox_label = SemKITTI2train(val_vox_label)
# val_pt_labs = SemKITTI2train(val_pt_labs)
# val_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in val_pt_fea]
# val_grid_ten = [torch.from_numpy(i[:,:2]).to(pytorch_device) for i in val_grid]
# val_label_tensor=val_vox_label.type(torch.LongTensor).to(pytorch_device)
# torch.cuda.synchronize()
# start_time = time.time()
# predict_labels = my_model(val_pt_fea_ten, val_grid_ten)
# torch.cuda.synchronize()
# time_list.append(time.time()-start_time)
# predict_labels = torch.argmax(predict_labels,dim=1)
# predict_labels = predict_labels.cpu().detach().numpy()
# for count,i_val_grid in enumerate(val_grid):
# hist_list.append(fast_hist_crop(predict_labels[count,val_grid[count][:,0],val_grid[count][:,1],val_grid[count][:,2]],val_pt_labs[count],unique_label))
# pbar.update(1)
# iou = per_class_iu(sum(hist_list))
# print('Validation per class iou: ')
# for class_name, class_iou in zip(unique_label_str,iou):
# print('%s : %.2f%%' % (class_name, class_iou*100))
# val_miou = np.nanmean(iou) * 100
# del val_vox_label,val_grid,val_pt_fea,val_grid_ten
# pbar.close()
# print('Current val miou is %.3f ' % val_miou)
# print('Inference time per %d is %.4f seconds\n' %
# (test_batch_size,np.mean(time_list)))
# test
print('*'*80)
print('Generate predictions for test split')
print('*'*80)
pbar = tqdm(total=len(test_dataset_loader))
with torch.no_grad():
for i_iter_test,(_,_,test_grid,_,test_pt_fea,test_index) in enumerate(test_dataset_loader):
# predict
test_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in test_pt_fea]
test_grid_ten = [torch.from_numpy(i[:,:2]).to(pytorch_device) for i in test_grid]
predict_labels = my_model(test_pt_fea_ten,test_grid_ten)
predict_labels = torch.argmax(predict_labels,1).type(torch.uint8)
predict_labels = predict_labels.cpu().detach().numpy()
# write to label file
for count,i_test_grid in enumerate(test_grid):
test_pred_label = predict_labels[count,test_grid[count][:,0],test_grid[count][:,1],test_grid[count][:,2]]
test_pred_label = train2SemKITTI(test_pred_label)
test_pred_label = np.expand_dims(test_pred_label,axis=1)
save_dir = test_pt_dataset.im_idx[test_index[count]]
_,dir2 = save_dir.split('/sequences/',1)
new_save_dir = output_path + '/sequences/' +dir2.replace('velodyne','predictions')[:-3]+'label'
if not os.path.exists(os.path.dirname(new_save_dir)):
try:
os.makedirs(os.path.dirname(new_save_dir))
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
# REMAP
remapedList = []
for lbl in test_pred_label:
remapedList.append(learning_map_inv[int(lbl)])
remaped = np.array(remapedList)
# test_pred_label = test_pred_label.astype(np.uint32)
# test_pred_label.tofile(new_save_dir)
remaped = remaped.astype(np.uint32)
remaped.tofile(new_save_dir)
pbar.update(1)
# del test_grid,test_pt_fea,test_index
pbar.close()
# print('Predicted test labels are saved in %s. Need to be shifted to original label format before submitting to the Competition website.' % output_path)
# print('Remapping script can be found in semantic-kitti-api.')
if __name__ == '__main__':
# Testing settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('-d', '--data_dir', default='data')
parser.add_argument('-p', '--model_save_path', default='pretrained_weight/SemKITTI_PolarSeg.pt')
parser.add_argument('-o', '--test_output_path', default='out/SemKITTI_test')
parser.add_argument('-m', '--model', choices=['polar','traditional'], default='polar', help='training model: polar or traditional (default: polar)')
parser.add_argument('-s', '--grid_size', nargs='+', type=int, default = [480,360,32], help='grid size of BEV representation (default: [480,360,32])')
parser.add_argument('--test_batch_size', type=int, default=1, help='batch size for training (default: 1)')
args = parser.parse_args()
if not len(args.grid_size) == 3:
raise Exception('Invalid grid size! Grid size should have 3 dimensions.')
print(' '.join(sys.argv))
print(args)
main(args)