-
Notifications
You must be signed in to change notification settings - Fork 12
/
sparse_linear_s3_ga_ma.py
204 lines (166 loc) · 8.43 KB
/
sparse_linear_s3_ga_ma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time
import math
import numpy as np
import torch
from data_loader import libsvm_dataset
from utils.constants import Prefix, MLModel, Optimization, Synchronization
from storage.s3.s3_type import S3Storage
from communicator import S3Communicator
from model import linear_models
def handler(event, context):
start_time = time.time()
# dataset setting
file = event['file']
data_bucket = event['data_bucket']
dataset_type = event['dataset_type']
assert dataset_type == "sparse_libsvm"
n_features = event['n_features']
n_classes = event['n_classes']
n_workers = event['n_workers']
worker_index = event['worker_index']
tmp_bucket = event['tmp_bucket']
merged_bucket = event['merged_bucket']
# training setting
model_name = event['model']
optim = event['optim']
sync_mode = event['sync_mode']
assert model_name.lower() in MLModel.Sparse_Linear_Models
assert optim.lower() in Optimization.All
assert sync_mode.lower() in Synchronization.All
# hyper-parameter
learning_rate = event['lr']
batch_size = event['batch_size']
n_epochs = event['n_epochs']
valid_ratio = event['valid_ratio']
shuffle_dataset = True
random_seed = 100
print('bucket = {}'.format(data_bucket))
print("file = {}".format(file))
print('number of workers = {}'.format(n_workers))
print('worker index = {}'.format(worker_index))
print('model = {}'.format(model_name))
print('optimization = {}'.format(optim))
print('sync mode = {}'.format(sync_mode))
storage = S3Storage()
communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index)
# Read file from s3
read_start = time.time()
lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n")
print("read data cost {} s".format(time.time() - read_start))
parse_start = time.time()
dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type)
print("parse data cost {} s".format(time.time() - parse_start))
preprocess_start = time.time()
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(valid_ratio * dataset_size))
if shuffle_dataset:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# split train set and test set
train_set = [dataset[i] for i in train_indices]
n_train_batch = math.floor(len(train_set) / batch_size)
val_set = [dataset[i] for i in val_indices]
print("preprocess data cost {} s, dataset size = {}"
.format(time.time() - preprocess_start, dataset_size))
model = linear_models.get_sparse_model(model_name, train_set, val_set, n_features,
n_epochs, learning_rate, batch_size)
train_start = time.time()
# Training the Model
for epoch in range(n_epochs):
epoch_start = time.time()
epoch_cal_time = 0
epoch_comm_time = 0
epoch_loss = 0.
for batch_idx in range(n_train_batch):
batch_start = time.time()
batch_loss, batch_acc = model.one_batch()
epoch_loss += batch_loss.average
if optim == "grad_avg":
if sync_mode == "reduce" or sync_mode == "reduce_scatter":
w_b = np.concatenate((model.weight.numpy().flatten(), np.array([model.bias], dtype=np.float32)))
batch_cal_time = time.time() - batch_start
epoch_cal_time += batch_cal_time
batch_comm_start = time.time()
postfix = "{}_{}".format(epoch, batch_idx)
if sync_mode == "reduce":
w_b_merge = communicator.reduce_batch(w_b, postfix)
elif sync_mode == "reduce_scatter":
w_b_merge = communicator.reduce_scatter_batch(w_b, postfix)
w_merge = w_b_merge[:n_features] / float(n_workers)
b_merge = w_b_merge[-1] / float(n_workers)
model.weight = torch.from_numpy(w_merge).reshape(n_features, 1)
model.bias = float(b_merge)
batch_comm_time = time.time() - batch_comm_start
print("one {} round cost {} s".format(sync_mode, batch_comm_time))
epoch_comm_time += batch_comm_time
elif sync_mode == "async":
w_b = np.concatenate((model.weight.numpy().flatten(), np.array([model.bias], dtype=np.float32)))
batch_cal_time = time.time() - batch_start
epoch_cal_time += batch_cal_time
batch_comm_start = time.time()
# init model
if worker_index == 0 and epoch == 0 and batch_idx == 0:
storage.save(w_b.tobytes(), Prefix.w_b_prefix, merged_bucket)
w_b_merge = communicator.async_reduce(w_b, Prefix.w_b_prefix)
# async des not need average
w_merge = w_b_merge[:n_features]
b_merge = w_b_merge[-1]
model.weight = torch.from_numpy(w_merge).reshape(n_features, 1)
model.bias = float(b_merge)
batch_comm_time = time.time() - batch_comm_start
print("one {} round cost {} s".format(sync_mode, batch_comm_time))
epoch_comm_time += batch_comm_time
if batch_idx % 10 == 0:
print('Epoch: [%d/%d], Batch: [%d/%d], Time: %.4f s, Loss: %.4f, Accuracy: %.4f, batch cost %.4f s'
% (epoch + 1, n_epochs, batch_idx + 1, n_train_batch, time.time() - train_start,
batch_loss.average, batch_acc.accuracy, time.time() - batch_start))
if optim == "model_avg":
w_b = np.concatenate((model.weight.numpy().flatten(), np.array([model.bias], dtype=np.float32)))
epoch_cal_time += time.time() - epoch_start
epoch_sync_start = time.time()
postfix = str(epoch)
if sync_mode == "reduce":
w_b_merge = communicator.reduce_epoch(w_b, postfix)
elif sync_mode == "reduce_scatter":
w_b_merge = communicator.reduce_scatter_epoch(w_b, postfix)
elif sync_mode == "async":
if worker_index == 0 and epoch == 0:
storage.save(w_b.tobytes(), Prefix.w_b_prefix, merged_bucket)
w_b_merge = communicator.async_reduce(w_b, Prefix.w_b_prefix)
w_merge = w_b_merge[:n_features]
b_merge = w_b_merge[-1]
# async des not need average
if sync_mode == "reduce" or sync_mode == "reduce_scatter":
w_merge = w_merge / float(n_workers)
b_merge = b_merge / float(n_workers)
model.weight = torch.from_numpy(w_merge).reshape(n_features, 1)
model.bias = float(b_merge)
print("one {} round cost {} s".format(sync_mode, time.time() - epoch_sync_start))
epoch_comm_time += time.time() - epoch_sync_start
if worker_index == 0:
delete_start = time.time()
# model avg delete by epoch
if optim == "model_avg" and sync_mode != "async":
communicator.delete_expired_epoch(epoch)
elif optim == "grad_avg" and sync_mode != "async":
communicator.delete_expired_batch(epoch, batch_idx)
epoch_comm_time += time.time() - delete_start
# Test the Model
test_start = time.time()
test_loss, test_acc = model.evaluate()
test_time = time.time() - test_start
print("Epoch: [{}/{}] finishes, Batch: [{}/{}], Time: {:.4f}, Loss: {:.4f}, epoch cost {:.4f} s, "
"calculation cost = {:.4f} s, synchronization cost {:.4f} s, test cost {:.4f} s, "
"accuracy of the model on the {} test samples: {}, loss = {}"
.format(epoch + 1, n_epochs, batch_idx + 1, n_train_batch,
time.time() - train_start, epoch_loss, time.time() - epoch_start,
epoch_cal_time, epoch_comm_time, test_time,
len(val_set), test_acc.accuracy, test_loss.average))
if worker_index == 0:
storage.clear(tmp_bucket)
storage.clear(merged_bucket)
end_time = time.time()
print("Elapsed time = {} s".format(end_time - start_time))