-
Notifications
You must be signed in to change notification settings - Fork 12
/
linear_hybrid_ga.py
213 lines (180 loc) · 8.4 KB
/
linear_hybrid_ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import time
import numpy as np
import torch
from torch.autograd import Variable
from torch.nn import Parameter
from torch.utils.data.sampler import SubsetRandomSampler
from data_loader import libsvm_dataset
from thrift_ps.ps_service import ParameterServer
from thrift_ps.client import ps_client
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol
from utils.constants import Prefix, MLModel, Optimization, Synchronization
from storage.s3.s3_type import S3Storage
from model import linear_models
def handler(event, context):
start_time = time.time()
# dataset setting
file = event['file']
data_bucket = event['data_bucket']
dataset_type = event['dataset_type']
assert dataset_type == "dense_libsvm"
n_features = event['n_features']
n_classes = event['n_classes']
n_workers = event['n_workers']
worker_index = event['worker_index']
# ps setting
host = event['host']
port = event['port']
# training setting
model_name = event['model']
optim = event['optim']
sync_mode = event['sync_mode']
assert model_name.lower() in MLModel.Linear_Models
assert optim.lower() == Optimization.Grad_Avg
assert sync_mode.lower() == Synchronization.Reduce
# hyper-parameter
learning_rate = event['lr']
batch_size = event['batch_size']
n_epochs = event['n_epochs']
valid_ratio = event['valid_ratio']
print('bucket = {}'.format(data_bucket))
print("file = {}".format(file))
print('number of workers = {}'.format(n_workers))
print('worker index = {}'.format(worker_index))
print('model = {}'.format(model_name))
print('host = {}'.format(host))
print('port = {}'.format(port))
# Set thrift connection
# Make socket
transport = TSocket.TSocket(host, port)
# Buffering is critical. Raw sockets are very slow
transport = TTransport.TBufferedTransport(transport)
# Wrap in a protocol
protocol = TBinaryProtocol.TBinaryProtocol(transport)
# Create a client to use the protocol encoder
t_client = ParameterServer.Client(protocol)
# Connect!
transport.open()
# test thrift connection
ps_client.ping(t_client)
print("create and ping thrift server >>> HOST = {}, PORT = {}".format(host, port))
# Read file from s3
read_start = time.time()
storage = S3Storage()
lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n")
print("read data cost {} s".format(time.time() - read_start))
parse_start = time.time()
dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type)
print("parse data cost {} s".format(time.time() - parse_start))
preprocess_start = time.time()
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(valid_ratio * dataset_size))
shuffle_dataset = True
random_seed = 100
if shuffle_dataset:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# Creating data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
train_loader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
sampler=train_sampler)
n_train_batch = len(train_loader)
validation_loader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
sampler=valid_sampler)
print("preprocess data cost {} s, dataset size = {}"
.format(time.time() - preprocess_start, dataset_size))
model = linear_models.get_model(model_name, n_features, n_classes)
# Loss and Optimizer
# Softmax is internally computed.
# Set parameters to be updated.
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# register model
model_name = "w.b"
weight_shape = model.linear.weight.data.numpy().shape
weight_length = weight_shape[0] * weight_shape[1]
bias_shape = model.linear.bias.data.numpy().shape
bias_length = bias_shape[0]
model_length = weight_length + bias_length
ps_client.register_model(t_client, worker_index, model_name, model_length, n_workers)
ps_client.exist_model(t_client, model_name)
print("register and check model >>> name = {}, length = {}".format(model_name, model_length))
# Training the Model
train_start = time.time()
iter_counter = 0
for epoch in range(n_epochs):
epoch_start = time.time()
epoch_cal_time = 0
epoch_comm_time = 0
epoch_loss = 0.
for batch_idx, (items, labels) in enumerate(train_loader):
batch_comm_time = 0
batch_start = time.time()
# pull latest model
ps_client.can_pull(t_client, model_name, iter_counter, worker_index)
latest_model = ps_client.pull_model(t_client, model_name, iter_counter, worker_index)
model.linear.weight = Parameter(
torch.from_numpy(np.asarray(latest_model[:weight_length], dtype=np.float32).reshape(weight_shape)))
model.linear.bias = Parameter(
torch.from_numpy(np.asarray(latest_model[weight_length:], dtype=np.float32).reshape(bias_shape[0])))
batch_comm_time += time.time() - batch_start
# Forward + Backward + Optimize
batch_cal_start = time.time()
items = Variable(items.view(-1, n_features))
labels = Variable(labels)
optimizer.zero_grad()
outputs = model(items)
loss = criterion(outputs, labels)
epoch_loss += loss.item()
loss.backward()
# flatten and concat gradients of weight and bias
w_b_grad = np.concatenate((model.linear.weight.grad.data.double().numpy().flatten(),
model.linear.bias.grad.data.double().numpy().flatten()))
batch_cal_time = time.time() - batch_cal_start
# push gradient to PS
batch_comm_start = time.time()
ps_client.can_push(t_client, model_name, iter_counter, worker_index)
ps_client.push_grad(t_client, model_name, w_b_grad, -1. * learning_rate / n_workers,
iter_counter, worker_index)
ps_client.can_pull(t_client, model_name, iter_counter + 1, worker_index) # sync all workers
batch_comm_time += time.time() - batch_comm_start
epoch_cal_time += batch_cal_time
epoch_comm_time += batch_comm_time
if batch_idx % 10 == 0:
print('Epoch: [%d/%d], Batch: [%d/%d] >>> Time: %.4f, Loss: %.4f, epoch cost %.4f, '
'batch cost %.4f s: cal cost %.4f s and communication cost %.4f s'
% (epoch + 1, n_epochs, batch_idx + 1, n_train_batch,
time.time() - train_start, loss.data, time.time() - epoch_start,
time.time() - batch_start, batch_cal_time, batch_comm_time))
iter_counter += 1
# Test the Model
test_start = time.time()
n_test_correct = 0
n_test = 0
test_loss = 0
for items, labels in validation_loader:
items = Variable(items.view(-1, n_features))
labels = Variable(labels)
outputs = model(items)
test_loss += criterion(outputs, labels).data
_, predicted = torch.max(outputs.data, 1)
n_test += labels.size(0)
n_test_correct += (predicted == labels).sum()
test_time = time.time() - test_start
print('Epoch: [%d/%d], Batch: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f: '
'calculation cost = %.4f s, synchronization cost %.4f s, test cost %.4f s, '
'accuracy of the model on the %d test samples: %d %%, loss = %f'
% (epoch + 1, n_epochs, batch_idx + 1, n_train_batch,
time.time() - train_start, epoch_loss, time.time() - epoch_start,
epoch_cal_time, epoch_comm_time, test_time,
n_test, 100. * n_test_correct / n_test, test_loss / n_test))
end_time = time.time()
print("Elapsed time = {} s".format(end_time - start_time))