-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlinear_ec_admm.py
266 lines (220 loc) · 10.3 KB
/
linear_ec_admm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import time
import numpy as np
import torch
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
from data_loader import libsvm_dataset
from utils.constants import Prefix, MLModel, Optimization, Synchronization
from storage import S3Storage, MemcachedStorage
from communicator import MemcachedCommunicator
from model import linear_models
def initialize_z_and_u(shape):
z = np.random.rand(shape[0], shape[1]).astype(np.float32)
u = np.random.rand(shape[0], shape[1]).astype(np.float32)
return z, u
def update_z_u(w, z, u, rho, n, lam_0):
z_new = w + u
z_tem = abs(z_new) - lam_0 / float(n * rho)
z_new = np.sign(z_new) * z_tem * (z_tem > 0)
s = z_new - z
r = w - np.ones(w.shape[0] * w.shape[1]).astype(np.float).reshape(w.shape) * z_new
u_new = u + r
return z_new, s, r, s
def update_z(w, u, rho, n, lam_0):
z_new = w + u
z_tem = abs(z_new) - lam_0 / float(n * rho)
z_new = np.sign(z_new) * z_tem * (z_tem > 0)
return z_new
def check_stop(ep_abs, ep_rel, r, s, n, p, w, z, u, rho):
e_pri = (n*p)**(0.5) * ep_abs + ep_rel * (max(np.sum(w**2),np.sum(n*z**2)))**(0.5)
e_dual = (p)**(0.5) * ep_abs + ep_rel * rho * (np.sum(u**2))**(0.5)/(n)**(0.5)
print("r^2 = {}, s^2 = {}, e_pri = {}, e_dual = {}".
format(np.sum(r**2), e_pri, np.sum(s**2), e_dual))
stop = (np.sum(r**2) <= e_pri**2) & (np.sum(s**2) <= e_dual**2)
return stop
def handler(event, context):
start_time = time.time()
# dataset setting
file = event['file']
data_bucket = event['data_bucket']
dataset_type = event['dataset_type']
assert dataset_type == "dense_libsvm"
n_features = event['n_features']
n_classes = event['n_classes']
n_workers = event['n_workers']
worker_index = event['worker_index']
host = event['host']
port = event['port']
tmp_bucket = event['tmp_bucket']
merged_bucket = event['merged_bucket']
# training setting
model_name = event['model']
optim = event['optim']
sync_mode = event['sync_mode']
assert model_name.lower() in MLModel.Linear_Models
assert optim.lower() == Optimization.ADMM
assert sync_mode.lower() in [Synchronization.Reduce, Synchronization.Reduce_Scatter]
# hyper-parameter
learning_rate = event['lr']
batch_size = event['batch_size']
n_epochs = event['n_epochs']
valid_ratio = event['valid_ratio']
n_admm_epochs = event['n_admm_epochs']
lam = event['lambda']
rho = event['rho']
print('data bucket = {}'.format(data_bucket))
print("file = {}".format(file))
print('number of workers = {}'.format(n_workers))
print('worker index = {}'.format(worker_index))
print('model = {}'.format(model_name))
print('optimization = {}'.format(optim))
print('sync mode = {}'.format(sync_mode))
s3_storage = S3Storage()
mem_storage = MemcachedStorage(host, port)
communicator = MemcachedCommunicator(mem_storage, tmp_bucket, merged_bucket, n_workers, worker_index)
if worker_index == 0:
mem_storage.clear()
# Read file from s3
read_start = time.time()
lines = s3_storage.load(file, data_bucket).read().decode('utf-8').split("\n")
print("read data cost {} s".format(time.time() - read_start))
parse_start = time.time()
dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type)
print("parse data cost {} s".format(time.time() - parse_start))
preprocess_start = time.time()
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(valid_ratio * dataset_size))
shuffle_dataset = True
random_seed = 100
if shuffle_dataset:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# Creating data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
train_loader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
sampler=train_sampler)
n_train_batch = len(train_loader)
validation_loader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
sampler=valid_sampler)
print("preprocess data cost {} s, dataset size = {}"
.format(time.time() - preprocess_start, dataset_size))
model = linear_models.get_model(model_name, n_features, n_classes)
z, u = initialize_z_and_u(model.linear.weight.data.size())
print("size of z = {}".format(z.shape))
print("size of u = {}".format(u.shape))
# Loss and Optimizer
# Softmax is internally computed.
# Set parameters to be updated.
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# Training the Model
train_start = time.time()
for admm_epoch in range(n_admm_epochs):
print(">>> ADMM Epoch[{}]".format(admm_epoch))
admm_epoch_start = time.time()
admm_epoch_cal_time = 0
admm_epoch_sync_time = 0
admm_epoch_test_time = 0
for epoch in range(n_epochs):
epoch_start = time.time()
epoch_loss = 0.
for batch_index, (items, labels) in enumerate(train_loader):
batch_start = time.time()
items = Variable(items.view(-1, n_features))
labels = Variable(labels)
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = model(items)
classify_loss = criterion(outputs, labels)
epoch_loss += classify_loss.data
u_z = torch.from_numpy(u) - torch.from_numpy(z)
loss = classify_loss
for name, param in model.named_parameters():
if name.split('.')[-1] == "weight":
loss += rho / 2.0 * torch.norm(param + u_z, p=2)
# loss = classify_loss + rho / 2.0 * torch.norm(torch.sum(model.linear.weight, u_z))
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
epoch_cal_time = time.time() - epoch_start
admm_epoch_cal_time += epoch_cal_time
# Test the Model
test_start = time.time()
n_test_correct = 0
n_test = 0
test_loss = 0
for items, labels in validation_loader:
items = Variable(items.view(-1, n_features))
labels = Variable(labels)
outputs = model(items)
test_loss += criterion(outputs, labels).data
_, predicted = torch.max(outputs.data, 1)
n_test += labels.size(0)
n_test_correct += (predicted == labels).sum()
epoch_test_time = time.time() - test_start
admm_epoch_test_time += epoch_test_time
print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
'cal cost %.4f s, test cost %.4f s, accuracy of the model on the %d test samples: %d %%, loss = %f'
% (epoch + 1, n_epochs, batch_index + 1, n_train_batch,
time.time() - train_start, epoch_loss, time.time() - epoch_start,
epoch_cal_time, epoch_test_time,
n_test, 100. * n_test_correct / n_test, test_loss / n_test))
sync_start = time.time()
w = model.linear.weight.data.numpy()
w_shape = w.shape
b = model.linear.bias.data.numpy()
b_shape = b.shape
u_shape = u.shape
w_b = np.concatenate((w.flatten(), b.flatten()))
u_w_b = np.concatenate((u.flatten(), w_b.flatten()))
# admm does not support async
if sync_mode == "reduce":
u_w_b_merge = communicator.reduce_epoch(u_w_b, admm_epoch)
elif sync_mode == "reduce_scatter":
u_w_b_merge = communicator.reduce_scatter_epoch(u_w_b, admm_epoch)
u_mean = u_w_b_merge[:u_shape[0] * u_shape[1]].reshape(u_shape) / float(n_workers)
w_mean = u_w_b_merge[u_shape[0] * u_shape[1]: u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]]\
.reshape(w_shape) / float(n_workers)
b_mean = u_w_b_merge[u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]:]\
.reshape(b_shape[0]) / float(n_workers)
model.linear.weight.data = torch.from_numpy(w_mean)
model.linear.bias.data = torch.from_numpy(b_mean)
print("one {} round cost {} s".format(sync_mode, time.time() - sync_start))
admm_epoch_sync_time += time.time() - sync_start
if worker_index == 0:
delete_start = time.time()
communicator.delete_expired_epoch(admm_epoch)
admm_epoch_sync_time += time.time() - delete_start
# z, u, r, s = update_z_u(w, z, u, rho, num_workers, lam)
# stop = check_stop(ep_abs, ep_rel, r, s, dataset_size, num_features, w, z, u, rho)
# print("stop = {}".format(stop))
# z = num_workers * rho / (2 * lam + num_workers * rho) * (w + u_mean)
z = update_z(w_mean, u_mean, rho, n_workers, lam)
u = u + model.linear.weight.data.numpy() - z
print("ADMM Epoch[{}] Epoch[{}] finishes, cost {} s, cal cost {} s, sync cost {} s, test cost {} s"
.format(admm_epoch, epoch, time.time() - admm_epoch_start,
admm_epoch_cal_time, admm_epoch_sync_time, admm_epoch_test_time))
# Test the Model
n_test_correct = 0
n_test = 0
test_loss = 0
for items, labels in validation_loader:
items = Variable(items.view(-1, n_features))
labels = Variable(labels)
outputs = model(items)
test_loss += criterion(outputs, labels).data
_, predicted = torch.max(outputs.data, 1)
n_test += labels.size(0)
n_test_correct += (predicted == labels).sum()
print('Train finish, time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f'
% (time.time() - train_start, n_test, 100. * n_test_correct / n_test, test_loss / n_test))
if worker_index == 0:
mem_storage.clear()
end_time = time.time()
print("Elapsed time = {} s".format(end_time - start_time))