diff --git a/Mathlib/Algebra/Category/ModuleCat/Basic.lean b/Mathlib/Algebra/Category/ModuleCat/Basic.lean index 7d510620b625eb..d2d9e5fca442b5 100644 --- a/Mathlib/Algebra/Category/ModuleCat/Basic.lean +++ b/Mathlib/Algebra/Category/ModuleCat/Basic.lean @@ -420,7 +420,7 @@ variable (M N : ModuleCat.{v} R) /-- `ModuleCat.Hom.hom` as an isomorphism of monoids. -/ @[simps] -def homMulEquiv : End M ≃* (M →ₗ[R] M) where +def endMulEquiv : End M ≃* (M →ₗ[R] M) where toFun := ModuleCat.Hom.hom invFun := ModuleCat.asHom map_mul' _ _ := rfl diff --git a/Mathlib/RepresentationTheory/Character.lean b/Mathlib/RepresentationTheory/Character.lean index 08ebd7a76c7f74..cb98ce35c607a7 100644 --- a/Mathlib/RepresentationTheory/Character.lean +++ b/Mathlib/RepresentationTheory/Character.lean @@ -116,7 +116,7 @@ theorem char_orthonormal (V W : FDRep k G) [Simple V] [Simple W] : rw [char_iso (FDRep.dualTensorIsoLinHom W.ρ V)] -- The average over the group of the character of a representation equals the dimension of the -- space of invariants. - rw [average_char_eq_finrank_invariants, ← FDRep.homMulEquiv_comp_ρ (of _), + rw [average_char_eq_finrank_invariants, ← FDRep.endMulEquiv_comp_ρ (of _), FDRep.of_ρ (linHom W.ρ V.ρ)] -- The space of invariants of `Hom(W, V)` is the subspace of `G`-equivariant linear maps, -- `Hom_G(W, V)`. diff --git a/Mathlib/RepresentationTheory/FDRep.lean b/Mathlib/RepresentationTheory/FDRep.lean index 99cec41eb8f22d..fd6ed9ca300789 100644 --- a/Mathlib/RepresentationTheory/FDRep.lean +++ b/Mathlib/RepresentationTheory/FDRep.lean @@ -82,15 +82,15 @@ instance (V W : FDRep k G) : FiniteDimensional k (V ⟶ W) := /-- The monoid homomorphism corresponding to the action of `G` onto `V : FDRep k G`. -/ def ρ (V : FDRep k G) : G →* V →ₗ[k] V := - (ModuleCat.homMulEquiv _).toMonoidHom.comp (Action.ρ V) + (ModuleCat.endMulEquiv _).toMonoidHom.comp (Action.ρ V) @[simp] -lemma homMulEquiv_symm_comp_ρ (V : FDRep k G) : - (MonoidHomClass.toMonoidHom (ModuleCat.homMulEquiv V.V.obj).symm).comp (ρ V) = Action.ρ V := rfl +lemma endMulEquiv_symm_comp_ρ (V : FDRep k G) : + (MonoidHomClass.toMonoidHom (ModuleCat.endMulEquiv V.V.obj).symm).comp (ρ V) = Action.ρ V := rfl @[simp] -lemma homMulEquiv_comp_ρ (V : FDRep k G) : - (MonoidHomClass.toMonoidHom (ModuleCat.homMulEquiv V.V.obj)).comp (Action.ρ V) = ρ V := rfl +lemma endMulEquiv_comp_ρ (V : FDRep k G) : + (MonoidHomClass.toMonoidHom (ModuleCat.endMulEquiv V.V.obj)).comp (Action.ρ V) = ρ V := rfl @[simp] lemma hom_action_ρ (V : FDRep k G) (g : G) : (Action.ρ V g).hom = ρ V g := rfl @@ -111,7 +111,7 @@ theorem Iso.conj_ρ {V W : FDRep k G} (i : V ≅ W) (g : G) : @[simps ρ] def of {V : Type u} [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρ : Representation k G V) : FDRep k G := - ⟨FGModuleCat.of k V, ρ ≫ MonCat.ofHom (ModuleCat.homMulEquiv _).symm.toMonoidHom⟩ + ⟨FGModuleCat.of k V, ρ ≫ MonCat.ofHom (ModuleCat.endMulEquiv _).symm.toMonoidHom⟩ instance : HasForget₂ (FDRep k G) (Rep k G) where forget₂ := (forget₂ (FGModuleCat k) (ModuleCat k)).mapAction (MonCat.of G) diff --git a/Mathlib/RepresentationTheory/Rep.lean b/Mathlib/RepresentationTheory/Rep.lean index 6c4322a9e996c8..8fae067ccf844d 100644 --- a/Mathlib/RepresentationTheory/Rep.lean +++ b/Mathlib/RepresentationTheory/Rep.lean @@ -61,11 +61,11 @@ instance (V : Rep k G) : Module k V := by -/ def ρ (V : Rep k G) : Representation k G V := -- Porting note: was `V.ρ` - (ModuleCat.homMulEquiv V.V).toMonoidHom.comp (Action.ρ V) + (ModuleCat.endMulEquiv V.V).toMonoidHom.comp (Action.ρ V) /-- Lift an unbundled representation to `Rep`. -/ def of {V : Type u} [AddCommGroup V] [Module k V] (ρ : G →* V →ₗ[k] V) : Rep k G := - ⟨ModuleCat.of k V, MonCat.ofHom ((ModuleCat.homMulEquiv _).symm.toMonoidHom.comp ρ) ⟩ + ⟨ModuleCat.of k V, MonCat.ofHom ((ModuleCat.endMulEquiv _).symm.toMonoidHom.comp ρ) ⟩ @[simp] theorem coe_of {V : Type u} [AddCommGroup V] [Module k V] (ρ : G →* V →ₗ[k] V) : @@ -77,7 +77,7 @@ theorem of_ρ {V : Type u} [AddCommGroup V] [Module k V] (ρ : G →* V →ₗ[k rfl theorem Action_ρ_eq_ρ {A : Rep k G} : - Action.ρ A = (ModuleCat.homMulEquiv _).symm.toMonoidHom.comp A.ρ := + Action.ρ A = (ModuleCat.endMulEquiv _).symm.toMonoidHom.comp A.ρ := rfl @[simp]