Skip to content

Commit

Permalink
chore: remove unused variables (#19413)
Browse files Browse the repository at this point in the history
  • Loading branch information
adomani committed Nov 25, 2024
1 parent a3580b7 commit c4f3076
Show file tree
Hide file tree
Showing 54 changed files with 83 additions and 106 deletions.
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Group/Pointwise/Set/Card.lean
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ lemma natCard_mul_le : Nat.card (s * t) ≤ Nat.card s * Nat.card t := by
end Mul

section InvolutiveInv
variable [InvolutiveInv G] {s t : Set G}
variable [InvolutiveInv G]

@[to_additive (attr := simp)]
lemma _root_.Cardinal.mk_inv (s : Set G) : #↥(s⁻¹) = #s := by
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/GroupWithZero/Pointwise/Set/Card.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ import Mathlib.SetTheory.Cardinal.Finite

open scoped Cardinal Pointwise

variable {G G₀ M M₀ : Type*}
variable {G M₀ : Type*}

namespace Set
variable [GroupWithZero G₀] [Zero M₀] [MulActionWithZero G₀ M₀] {a : G₀}
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Homology/Additive.lean
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,8 @@ variable {ι : Type*}
variable {V : Type u} [Category.{v} V] [Preadditive V]
variable {W : Type*} [Category W] [Preadditive W]
variable {W₁ W₂ : Type*} [Category W₁] [Category W₂] [HasZeroMorphisms W₁] [HasZeroMorphisms W₂]
variable {c : ComplexShape ι} {C D E : HomologicalComplex V c}
variable (f g : C ⟶ D) (h k : D ⟶ E) (i : ι)
variable {c : ComplexShape ι} {C D : HomologicalComplex V c}
variable (f : C ⟶ D) (i : ι)

namespace HomologicalComplex

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Quaternion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ theorem equivTuple_apply {R : Type*} (c₁ c₂ : R) (x : ℍ[R,c₁,c₂]) :
@[simp]
theorem mk.eta {R : Type*} {c₁ c₂} (a : ℍ[R,c₁,c₂]) : mk a.1 a.2 a.3 a.4 = a := rfl

variable {S T R : Type*} {c₁ c₂ : R} (r x y z : R) (a b c : ℍ[R,c₁,c₂])
variable {S T R : Type*} {c₁ c₂ : R} (r x y : R) (a b : ℍ[R,c₁,c₂])

instance [Subsingleton R] : Subsingleton ℍ[R, c₁, c₂] := (equivTuple c₁ c₂).subsingleton
instance [Nontrivial R] : Nontrivial ℍ[R, c₁, c₂] := (equivTuple c₁ c₂).surjective.nontrivial
Expand Down Expand Up @@ -742,7 +742,7 @@ instance {R : Type*} [One R] [Neg R] [Nontrivial R] : Nontrivial ℍ[R] :=

namespace Quaternion

variable {S T R : Type*} [CommRing R] (r x y z : R) (a b c : ℍ[R])
variable {S T R : Type*} [CommRing R] (r x y : R) (a b : ℍ[R])

export QuaternionAlgebra (re imI imJ imK)

Expand Down
5 changes: 2 additions & 3 deletions Mathlib/Algebra/TrivSqZeroExt.lean
Original file line number Diff line number Diff line change
Expand Up @@ -870,10 +870,9 @@ section Algebra

variable (S : Type*) (R R' : Type u) (M : Type v)
variable [CommSemiring S] [Semiring R] [CommSemiring R'] [AddCommMonoid M]
variable [Algebra S R] [Algebra S R'] [Module S M]
variable [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M]
variable [Algebra S R] [Module S M] [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M]
variable [IsScalarTower S R M] [IsScalarTower S Rᵐᵒᵖ M]
variable [Module R' M] [Module R'ᵐᵒᵖ M] [IsCentralScalar R' M] [IsScalarTower S R' M]
variable [Module R' M] [Module R'ᵐᵒᵖ M] [IsCentralScalar R' M]

instance algebra' : Algebra S (tsze R M) :=
{ (TrivSqZeroExt.inlHom R M).comp (algebraMap S R) with
Expand Down
5 changes: 2 additions & 3 deletions Mathlib/AlgebraicGeometry/Morphisms/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -142,8 +142,7 @@ instance inf (P Q : MorphismProperty Scheme) [IsLocalAtTarget P] [IsLocalAtTarge
fun h ↦ ⟨(iff_of_openCover' f 𝒰).mpr (fun i ↦ (h i).left),
(iff_of_openCover' f 𝒰).mpr (fun i ↦ (h i).right)⟩⟩

variable {P} [hP : IsLocalAtTarget P]
variable {X Y U V : Scheme.{u}} {f : X ⟶ Y} {g : U ⟶ Y} [IsOpenImmersion g] (𝒰 : Y.OpenCover)
variable {P} [hP : IsLocalAtTarget P] {X Y : Scheme.{u}} {f : X ⟶ Y} (𝒰 : Y.OpenCover)

lemma of_isPullback {UX UY : Scheme.{u}} {iY : UY ⟶ Y} [IsOpenImmersion iY]
{iX : UX ⟶ X} {f' : UX ⟶ UY} (h : IsPullback iX f' f iY) (H : P f) : P f' := by
Expand Down Expand Up @@ -228,7 +227,7 @@ instance inf (P Q : MorphismProperty Scheme) [IsLocalAtSource P] [IsLocalAtSourc
(iff_of_openCover' f 𝒰).mpr (fun i ↦ (h i).right)⟩⟩

variable {P} [IsLocalAtSource P]
variable {X Y U V : Scheme.{u}} {f : X ⟶ Y} {g : U ⟶ Y} [IsOpenImmersion g] (𝒰 : X.OpenCover)
variable {X Y : Scheme.{u}} {f : X ⟶ Y} (𝒰 : X.OpenCover)

lemma comp {UX : Scheme.{u}} (H : P f) (i : UX ⟶ X) [IsOpenImmersion i] :
P (i ≫ f) :=
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/Morphisms/Etale.lean
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ abbrev IsEtale {X Y : Scheme.{u}} (f : X ⟶ Y) := IsSmoothOfRelativeDimension 0

namespace IsEtale

variable {X Y : Scheme.{u}} (f : X ⟶ Y)
variable {X : Scheme.{u}}

instance : IsStableUnderBaseChange @IsEtale :=
isSmoothOfRelativeDimension_isStableUnderBaseChange 0
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/Morphisms/OpenImmersion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ universe u

namespace AlgebraicGeometry

variable {X Y Z : Scheme.{u}} (f : X ⟶ Y) (g : Y ⟶ Z)
variable {X Y : Scheme.{u}}

theorem isOpenImmersion_iff_stalk {f : X ⟶ Y} : IsOpenImmersion f ↔
IsOpenEmbedding f.base ∧ ∀ x, IsIso (f.stalkMap x) := by
Expand Down
3 changes: 1 addition & 2 deletions Mathlib/AlgebraicGeometry/SpreadingOut.lean
Original file line number Diff line number Diff line change
Expand Up @@ -49,8 +49,7 @@ open CategoryTheory

namespace AlgebraicGeometry

variable {X Y S : Scheme.{u}} (f : X ⟶ Y) (sX : X ⟶ S) (sY : Y ⟶ S) (e : f ≫ sY = sX)
variable {R A : CommRingCat.{u}}
variable {X Y S : Scheme.{u}} (f : X ⟶ Y) (sX : X ⟶ S) (sY : Y ⟶ S) {R A : CommRingCat.{u}}

/-- The germ map at `x` is injective if there exists some affine `U ∋ x`
such that the map `Γ(X, U) ⟶ X_x` is injective -/
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/Convex/Gauge.lean
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ open scoped Pointwise Topology NNReal

noncomputable section

variable {𝕜 E F : Type*}
variable {𝕜 E : Type*}

section AddCommGroup

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Analysis/Convex/Normed.lean
Original file line number Diff line number Diff line change
Expand Up @@ -25,14 +25,14 @@ We prove the following facts:
is bounded.
-/

variable {ι : Type*} {E P : Type*}
variable {E P : Type*}

open AffineBasis Module Metric Set
open scoped Convex Pointwise Topology

section SeminormedAddCommGroup
variable [SeminormedAddCommGroup E] [NormedSpace ℝ E] [PseudoMetricSpace P] [NormedAddTorsor E P]
variable {s t : Set E}
variable {s : Set E}

/-- The norm on a real normed space is convex on any convex set. See also `Seminorm.convexOn`
and `convexOn_univ_norm`. -/
Expand Down
10 changes: 3 additions & 7 deletions Mathlib/Analysis/InnerProductSpace/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1600,9 +1600,7 @@ end ContinuousLinearMap

section

variable {ι : Type*} {ι' : Type*} {ι'' : Type*}
variable {E' : Type*} [SeminormedAddCommGroup E'] [InnerProductSpace 𝕜 E']
variable {E'' : Type*} [SeminormedAddCommGroup E''] [InnerProductSpace 𝕜 E'']
variable {ι : Type*} {ι' : Type*} {E' : Type*} [SeminormedAddCommGroup E'] [InnerProductSpace 𝕜 E']

@[simp]
theorem Orthonormal.equiv_refl {v : Basis ι 𝕜 E} (hv : Orthonormal 𝕜 v) :
Expand Down Expand Up @@ -1683,7 +1681,7 @@ open scoped InnerProductSpace

variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
variable [NormedAddCommGroup F] [InnerProductSpace ℝ F]
variable {ι : Type*} {ι' : Type*} {ι'' : Type*}
variable {ι : Type*}

local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y

Expand Down Expand Up @@ -2188,9 +2186,7 @@ local notation "IK" => @RCLike.I 𝕜 _

local postfix:90 "†" => starRingEnd _

variable {ι : Type*}
variable {G : ι → Type*} [∀ i, NormedAddCommGroup (G i)] [∀ i, InnerProductSpace 𝕜 (G i)]
{V : ∀ i, G i →ₗᵢ[𝕜] E} (hV : OrthogonalFamily 𝕜 G V) [dec_V : ∀ (i) (x : G i), Decidable (x ≠ 0)]
variable {ι : Type*} {G : ι → Type*}

/-- An orthogonal family forms an independent family of subspaces; that is, any collection of
elements each from a different subspace in the family is linearly independent. In particular, the
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Analysis/Normed/Field/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -955,7 +955,7 @@ theorem NormedAddCommGroup.tendsto_atTop' [Nonempty α] [Preorder α] [IsDirecte

section RingHomIsometric

variable {R₁ : Type*} {R₂ : Type*} {R₃ : Type*}
variable {R₁ R₂ : Type*}

/-- This class states that a ring homomorphism is isometric. This is a sufficient assumption
for a continuous semilinear map to be bounded and this is the main use for this typeclass. -/
Expand All @@ -965,7 +965,7 @@ class RingHomIsometric [Semiring R₁] [Semiring R₂] [Norm R₁] [Norm R₂] (

attribute [simp] RingHomIsometric.is_iso

variable [SeminormedRing R₁] [SeminormedRing R₂] [SeminormedRing R₃]
variable [SeminormedRing R₁]

instance RingHomIsometric.ids : RingHomIsometric (RingHom.id R₁) :=
⟨rfl⟩
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/Analysis/Normed/Group/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ normed group
-/


variable {𝓕 𝕜 α ι κ E F G : Type*}
variable {𝓕 α ι κ E F G : Type*}

open Filter Function Metric Bornology

Expand Down Expand Up @@ -337,7 +337,7 @@ abbrev GroupNorm.toNormedCommGroup [CommGroup E] (f : GroupNorm E) : NormedCommG
section SeminormedGroup

variable [SeminormedGroup E] [SeminormedGroup F] [SeminormedGroup G] {s : Set E}
{a a₁ a₂ b b₁ b₂ c : E} {r r₁ r₂ : ℝ}
{a a₁ a₂ b c : E} {r r₁ r₂ : ℝ}

@[to_additive]
theorem dist_eq_norm_div (a b : E) : dist a b = ‖a / b‖ :=
Expand Down Expand Up @@ -1024,7 +1024,7 @@ end Induced

section SeminormedCommGroup

variable [SeminormedCommGroup E] [SeminormedCommGroup F] {a a₁ a₂ b b₁ b₂ : E} {r r₁ r₂ : ℝ}
variable [SeminormedCommGroup E] [SeminormedCommGroup F] {a b : E} {r : ℝ}

@[to_additive]
theorem dist_inv (x y : E) : dist x⁻¹ y = dist x y⁻¹ := by
Expand Down Expand Up @@ -1290,7 +1290,7 @@ end SeminormedCommGroup

section NormedGroup

variable [NormedGroup E] [NormedGroup F] {a b : E}
variable [NormedGroup E] {a b : E}

@[to_additive (attr := simp) norm_eq_zero]
theorem norm_eq_zero'' : ‖a‖ = 0 ↔ a = 1 :=
Expand Down
3 changes: 1 addition & 2 deletions Mathlib/Analysis/Normed/Group/Bounded.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,10 @@ normed group
open Filter Metric Bornology
open scoped Pointwise Topology

variableι E F G : Type*}
variable {α E F G : Type*}

section SeminormedGroup
variable [SeminormedGroup E] [SeminormedGroup F] [SeminormedGroup G] {s : Set E}
{a a₁ a₂ b b₁ b₂ : E} {r r₁ r₂ : ℝ}

@[to_additive (attr := simp) comap_norm_atTop]
lemma comap_norm_atTop' : comap norm atTop = cobounded E := by
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/Analysis/Normed/Group/Uniform.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,13 @@ This file proves lipschitzness of normed group operations and shows that normed
groups.
-/

variable {𝓕 α E F : Type*}
variable {𝓕 E F : Type*}

open Filter Function Metric Bornology
open scoped ENNReal NNReal Uniformity Pointwise Topology

section SeminormedGroup
variable [SeminormedGroup E] [SeminormedGroup F] {s : Set E} {a a₁ a₂ b b₁ b₂ : E} {r r₁ r₂ : ℝ}
variable [SeminormedGroup E] [SeminormedGroup F] {s : Set E} {a b : E} {r : ℝ}

@[to_additive]
instance NormedGroup.to_isometricSMul_right : IsometricSMul Eᵐᵒᵖ E :=
Expand Down Expand Up @@ -177,7 +177,7 @@ end SeminormedGroup

section SeminormedCommGroup

variable [SeminormedCommGroup E] [SeminormedCommGroup F] {a a₁ a₂ b b₁ b₂ : E} {r r₁ r₂ : ℝ}
variable [SeminormedCommGroup E] [SeminormedCommGroup F] {a₁ a₂ b₁ b₂ : E} {r₁ r₂ : ℝ}

@[to_additive]
instance NormedGroup.to_isometricSMul_left : IsometricSMul E E :=
Expand Down Expand Up @@ -239,7 +239,7 @@ theorem edist_mul_mul_le (a₁ a₂ b₁ b₂ : E) :

section PseudoEMetricSpace
variable {α E : Type*} [SeminormedCommGroup E] [PseudoEMetricSpace α] {K Kf Kg : ℝ≥0}
{f g : α → E} {s : Set α} {x : α}
{f g : α → E} {s : Set α}

@[to_additive (attr := simp)]
lemma lipschitzWith_inv_iff : LipschitzWith K f⁻¹ ↔ LipschitzWith K f := by simp [LipschitzWith]
Expand Down
7 changes: 2 additions & 5 deletions Mathlib/Analysis/Normed/Module/FiniteDimension.lean
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,7 @@ namespace LinearIsometry

open LinearMap

variable {R : Type*} [Semiring R]
variable {F E₁ : Type*} [SeminormedAddCommGroup F] [NormedAddCommGroup E₁] [Module R E₁]
variable {F E₁ : Type*} [SeminormedAddCommGroup F] [NormedAddCommGroup E₁]
variable {R₁ : Type*} [Field R₁] [Module R₁ E₁] [Module R₁ F] [FiniteDimensional R₁ E₁]
[FiniteDimensional R₁ F]

Expand Down Expand Up @@ -110,9 +109,7 @@ end AffineIsometry
section CompleteField

variable {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E]
[NormedSpace 𝕜 E] {F : Type w} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {F' : Type x}
[AddCommGroup F'] [Module 𝕜 F'] [TopologicalSpace F'] [TopologicalAddGroup F']
[ContinuousSMul 𝕜 F'] [CompleteSpace 𝕜]
[NormedSpace 𝕜 E] {F : Type w} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [CompleteSpace 𝕜]

section Affine

Expand Down
1 change: 0 additions & 1 deletion Mathlib/CategoryTheory/Adjunction/Evaluation.lean
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@ open CategoryTheory.Limits
universe v₁ v₂ v₃ u₁ u₂ u₃

variable {C : Type u₁} [Category.{v₁} C] (D : Type u₂) [Category.{v₂} D]
(E : Type u₃) [Category.{v₃} E]

noncomputable section

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/GradedObject.lean
Original file line number Diff line number Diff line change
Expand Up @@ -316,7 +316,7 @@ lemma hasMap_of_iso (e : X ≅ Y) (p: I → J) [HasMap X p] : HasMap Y p := fun
exact hasColimitOfIso α.symm

section
variable [X.HasMap p] [Y.HasMap p] [Z.HasMap p]
variable [X.HasMap p] [Y.HasMap p]

/-- Given `X : GradedObject I C` and `p : I → J`, `X.mapObj p` is the graded object by `J`
which in degree `j` consists of the coproduct of the `X i` such that `p i = j`. -/
Expand Down
1 change: 0 additions & 1 deletion Mathlib/CategoryTheory/GuitartExact/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,6 @@ abbrev CostructuredArrowDownwards.mk (comm : R.map a ≫ w.app X₁ ≫ B.map b
CostructuredArrow.mk (Y := StructuredArrow.mk a)
(StructuredArrow.homMk b (by simpa using comm))

variable (comm : R.map a ≫ w.app X₁ ≫ B.map b = g)
variable {w g}

lemma StructuredArrowRightwards.mk_surjective
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Sites/NonabelianCohomology/H1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ variable {C : Type u} [Category.{v} C]

namespace PresheafOfGroups

variable (G : Cᵒᵖ ⥤ Grp.{w}) {X : C} {I : Type w'} (U : I → C)
variable (G : Cᵒᵖ ⥤ Grp.{w}) {I : Type w'} (U : I → C)

/-- A zero cochain consists of a family of sections. -/
def ZeroCochain := ∀ (i : I), G.obj (Opposite.op (U i))
Expand Down
3 changes: 1 addition & 2 deletions Mathlib/Combinatorics/SimpleGraph/Triangle/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,7 @@ open Fintype (card)

namespace SimpleGraph

variable {α β 𝕜 : Type*} [LinearOrderedField 𝕜] {G H : SimpleGraph α} {ε δ : 𝕜} {n : ℕ}
{s : Finset α}
variable {α β 𝕜 : Type*} [LinearOrderedField 𝕜] {G H : SimpleGraph α} {ε δ : 𝕜}

section LocallyLinear

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ attribute [-instance] decidableEq_of_subsingleton

open Finset Fintype

variable {α : Type*} (G G' : SimpleGraph α) [DecidableRel G.Adj] {ε : ℝ} {s t u : Finset α}
variable {α : Type*} (G : SimpleGraph α) [DecidableRel G.Adj] {ε : ℝ} {s t u : Finset α}

namespace SimpleGraph

Expand Down Expand Up @@ -146,7 +146,7 @@ private lemma triple_eq_triple_of_mem (hst : Disjoint s t) (hsu : Disjoint s u)
· rintro rfl
solve_by_elim

variable [Fintype α] {P : Finpartition (univ : Finset α)}
variable [Fintype α]

/-- The **Triangle Counting Lemma**. If `G` is a graph and `s`, `t`, `u` are disjoint sets of
vertices such that each pair is `ε`-uniform and `2 * ε`-dense, then `G` contains at least
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Combinatorics/SimpleGraph/Triangle/Tripartite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ This construction shows up unrelatedly twice in the theory of Roth numbers:
open Finset Function Sum3

variable {α β γ 𝕜 : Type*} [LinearOrderedField 𝕜] {t : Finset (α × β × γ)} {a a' : α} {b b' : β}
{c c' : γ} {x : α × β × γ} {ε : 𝕜}
{c c' : γ} {x : α × β × γ}

namespace SimpleGraph
namespace TripartiteFromTriangles
Expand Down
2 changes: 0 additions & 2 deletions Mathlib/Data/Real/Sqrt.lean
Original file line number Diff line number Diff line change
Expand Up @@ -311,8 +311,6 @@ end Mathlib.Meta.Positivity

namespace Real

variable {x y : ℝ}

@[simp]
theorem sqrt_mul {x : ℝ} (hx : 0 ≤ x) (y : ℝ) : √(x * y) = √x * √y := by
simp_rw [Real.sqrt, ← NNReal.coe_mul, NNReal.coe_inj, Real.toNNReal_mul hx, NNReal.sqrt_mul]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/MeasureTheory/Constructions/Pi.lean
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ theorem isPiSystem_pi [∀ i, MeasurableSpace (α i)] :

section Finite

variable [Finite ι] [Finite ι']
variable [Finite ι]

/-- Boxes of countably spanning sets are countably spanning. -/
theorem IsCountablySpanning.pi {C : ∀ i, Set (Set (α i))} (hC : ∀ i, IsCountablySpanning (C i)) :
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/MeasureTheory/Group/Action.lean
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ namespace MeasureTheory

universe u v w

variable {G : Type u} {M : Type v} {α : Type w} {s : Set α}
variable {G : Type u} {M : Type v} {α : Type w}

namespace SMulInvariantMeasure

Expand Down Expand Up @@ -198,7 +198,7 @@ instance smulInvariantMeasure_map_smul [SMul M α] [SMul N α] [SMulCommClass N

end SMulHomClass

variable (G) {m : MeasurableSpace α} [Group G] [MulAction G α] (c : G) (μ : Measure α)
variable (G) {m : MeasurableSpace α} [Group G] [MulAction G α] (μ : Measure α)

variable [MeasurableSpace G] [MeasurableSMul G α] in
/-- Equivalent definitions of a measure invariant under a multiplicative action of a group.
Expand Down
Loading

0 comments on commit c4f3076

Please sign in to comment.