diff --git a/Mathlib/CategoryTheory/Limits/IsConnected.lean b/Mathlib/CategoryTheory/Limits/IsConnected.lean index 0992ce259bd2e..200ed0d40bc86 100644 --- a/Mathlib/CategoryTheory/Limits/IsConnected.lean +++ b/Mathlib/CategoryTheory/Limits/IsConnected.lean @@ -39,7 +39,9 @@ unit-valued, singleton, colimit universe w v u -namespace CategoryTheory.Limits.Types +namespace CategoryTheory + +namespace Limits.Types variable (C : Type u) [Category.{v} C] @@ -111,8 +113,15 @@ theorem isConnected_iff_isColimit_pUnitCocone : simp only [isConnected_iff_colimit_constPUnitFunctor_iso_pUnit.{w} C] exact ⟨colimit.isoColimitCocone colimitCocone⟩ +end Limits.Types + +namespace Functor + +open Limits.Types + universe v₂ u₂ -variable {C : Type u} {D : Type u₂} [Category.{v} C] [Category.{v₂} D] + +variable {C : Type u} [Category.{v} C] {D : Type u₂} [Category.{v₂} D] /-- The domain of a final functor is connected if and only if its codomain is connected. -/ theorem isConnected_iff_of_final (F : C ⥤ D) [F.Final] : IsConnected C ↔ IsConnected D := by @@ -126,4 +135,6 @@ theorem isConnected_iff_of_initial (F : C ⥤ D) [F.Initial] : IsConnected C ↔ rw [isConnected_iff_isConnected_op C, isConnected_iff_isConnected_op D] exact isConnected_iff_of_final F.op -end CategoryTheory.Limits.Types +end Functor + +end CategoryTheory