From 153dff3bd558088aa4c0d5adac4ba0204774f5db Mon Sep 17 00:00:00 2001 From: David Renshaw Date: Tue, 10 Dec 2024 14:22:05 -0500 Subject: [PATCH] chore(Analysis/SpecialFunctions/Integrals) simplify proof of intervalIntegrable_cpow --- Mathlib/Analysis/SpecialFunctions/Integrals.lean | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/Mathlib/Analysis/SpecialFunctions/Integrals.lean b/Mathlib/Analysis/SpecialFunctions/Integrals.lean index f80d1afa00a62..b3b78b374fb6f 100644 --- a/Mathlib/Analysis/SpecialFunctions/Integrals.lean +++ b/Mathlib/Analysis/SpecialFunctions/Integrals.lean @@ -140,10 +140,7 @@ theorem intervalIntegrable_cpow {r : ℂ} (h : 0 ≤ r.re ∨ (0 : ℝ) ∉ [[a, · -- case `c < 0`: integrand is identically constant, *except* at `x = 0` if `r ≠ 0`. apply IntervalIntegrable.symm rw [intervalIntegrable_iff_integrableOn_Ioc_of_le hc.le] - have : Ioc c 0 = Ioo c 0 ∪ {(0 : ℝ)} := by - rw [← Ioo_union_Icc_eq_Ioc hc (le_refl 0), ← Icc_def] - simp_rw [← le_antisymm_iff, setOf_eq_eq_singleton'] - rw [this, integrableOn_union, and_comm]; constructor + rw [← Ioo_union_right hc, integrableOn_union, and_comm]; constructor · refine integrableOn_singleton_iff.mpr (Or.inr ?_) exact isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure.lt_top_of_isCompact isCompact_singleton