diff --git a/src/solutions/friday/manifolds.lean b/src/solutions/friday/manifolds.lean index d25f963..ea2bfa2 100644 --- a/src/solutions/friday/manifolds.lean +++ b/src/solutions/friday/manifolds.lean @@ -590,11 +590,11 @@ to use the library section you_should_probably_skip_this /- If `M` is a manifold modelled on a vector space `E`, then the underlying type for the tangent -bundle is just `Σ (x : M), tangent_space x M` (i.e., the disjoint union of the tangent spaces, +bundle is effectively `Σ (x : M), tangent_space x M` (i.e., the disjoint union of the tangent spaces, indexed by `x` -- this is a basic object in dependent type theory). And `tangent_space x M` is just (a copy of) `E` by definition. -/ -lemma tangent_bundle_myℝ_is_prod : tangent_bundle 𝓡1 myℝ = Σ (x : myℝ), ℝ := +lemma tangent_bundle_myℝ_is_prod : tangent_bundle 𝓡1 myℝ = bundle.total_space ℝ (λ x : myℝ, ℝ) := /- inline sorry -/rfl/- inline sorry -/ /- This means that you can specify a point in the tangent bundle as a pair `⟨x, v⟩`. @@ -1016,7 +1016,7 @@ begin { rcases x with ⟨x', h'⟩, simp at h', simp [h'] }, - { have A : unique_mdiff_within_at 𝓡1 (Icc (0 : ℝ) 1) (⟨(x : ℝ), v⟩ : tangent_bundle 𝓡1 ℝ).fst, + { have A : unique_mdiff_within_at 𝓡1 (Icc (0 : ℝ) 1) (⟨(x : ℝ), v⟩ : tangent_bundle 𝓡1 ℝ).proj, { rw unique_mdiff_within_at_iff_unique_diff_within_at, apply unique_diff_on_Icc_zero_one _ x.2 }, change (tangent_map (𝓡∂ 1) 𝓡1 g (tangent_map_within 𝓡1 (𝓡∂ 1) f (Icc 0 1) ⟨x, v⟩)).snd = v,