-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
digital_recognition_cnn.py
96 lines (73 loc) · 3.19 KB
/
digital_recognition_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding( "utf-8" )
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', './', 'Directory for storing data')
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# 初始化生成随机的权重(变量),避免神经元输出恒为0
def weight_variable(shape):
# 以正态分布生成随机值
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# 初始化生成随机的偏置项(常量),避免神经元输出恒为0
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 卷积采用1步长,0边距,保证输入输出大小相同
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 池化采用2×2模板
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# 28*28=784
x = tf.placeholder(tf.float32, [None, 784])
# 输出类别共10个:0-9
y_ = tf.placeholder("float", [None,10])
# 第一层卷积权重,视野是5*5,输入通道1个,输出通道32个
W_conv1 = weight_variable([5, 5, 1, 32])
# 第一层卷积偏置项有32个
b_conv1 = bias_variable([32])
# 把x变成4d向量,第二维和第三维是图像尺寸,第四维是颜色通道数1
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# 第二层卷积权重,视野是5*5,输入通道32个,输出通道64个
W_conv2 = weight_variable([5, 5, 32, 64])
# 第二层卷积偏置项有64个
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 第二层池化后尺寸编程7*7,第三层是全连接,输入是64个通道,输出是1024个神经元
W_fc1 = weight_variable([7 * 7 * 64, 1024])
# 第三层全连接偏置项有1024个
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 按float做dropout,以减少过拟合
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 最后的softmax层生成10种分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
# Adam优化器来做梯度最速下降
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g"%(i, train_accuracy)
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print "test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})