-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
68 lines (58 loc) · 3.67 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
import os
from src.pre_process import pre_process
from src.process_results import process_results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--run_label", type=str, required=False, default="run_1")
parser.add_argument("-model", type=str, required=True, default='baseline',
choices = ['baseline', 'ppr_ic'],
help="The base model to link the entities: 'baseline' (it chooses the\
best candidate for each entity according to Leveshtein distance), \
'ppr_ic' (it generates a list of top-k candidates for each entity \
and then applies the PPR algorithm and the Information content to \
choose the best candidate)")
parser.add_argument("--link_mode", type=str, required=False, default='none',
choices = ['none', 'kb_link', 'corpus_link', 'kb_corpus_link'],
help = "How to add edges in the disambiguation graphs if ppr_ic model \
is being applied: 'none' (when model = 'baseline'), 'kb_link' (two \
nodes in the disambiguation graph are connected if they are directly \
linked in the respective ontology, 'corpus_link' (two nodes in the \
disambiguation graph are connected if they appear in the extracted \
relations set, 'kb_corpus_link' : concatenation of above link modes")
parser.add_argument("--dataset", type=str, required=False,
choices = ['craft_chebi', "bc5cdr_medic_train", "bc5cdr_medic_dev",
"bc5cdr_medic_test", "bc5cdr_medic_all", "bc5cdr_chemicals_train",
"bc5cdr_chemicals_dev", "bc5cdr_chemicals_test",
"bc5cdr_chemicals_all"],
help = "The source dataset containing entities to be linked to the \
respective target ontology")
parser.add_argument("--input_file", type=str, required=False,
help= "Read json input file containing the entities to be linked. \
Format of the file: {'doc_id': 'entity_text_1', 'entity_text_2'}")
parser.add_argument("-target_kb", type=str, required=True,
choices = ['chebi', 'ctd_chem', 'medic'],
help= "If there is an input file, this argument specifies the target \
KB to where the entities must be matched")
parser.add_argument("--out_dir", type=str,required=False)
args = parser.parse_args()
#------------------------------------------------------------------------------
# Pre-processing or 'baseline' model application
#------------------------------------------------------------------------------
pre_process(args.model, run_label=args.run_label, link_mode=args.link_mode,
dataset=args.dataset, input_file=args.input_file, target_kb=args.target_kb)
#------------------------------------------------------------------------------
# REEL model
#------------------------------------------------------------------------------
# Build a disambiguation graph from each candidates file: the nodes are the candidates
# and relations are added according to link_mode
if args.model != "baseline":
comm = ''
if args.input_file != None:
comm = 'java ppr_for_ned_all {} {} {}'.format(args.run_label, args.model, args.link_mode)
os.system(comm)
process_results(args.target_kb, args.link_mode, run_label=args.run_label, input_file=args.input_file, out_dir=args.out_dir)
elif args.dataset:
comm = 'java ppr_for_ned_all {} {} {}'.format(args.dataset, args.model, args.link_mode)
os.system(comm)
process_results(args.target_kb, args.link_mode, dataset= args.dataset, out_dir=args.out_dir)